CHEMISTRY A European Journal

Supporting Information

Real-Time NMR Studies of Oxyamine Ligations of Reducing Carbohydrates under Equilibrium Conditions

Oliver R. Baudendistel⁺, Daniel E. Wieland⁺, Magnus S. Schmidt, and Valentin Wittmann^{*[a]}

chem_201603369_sm_miscellaneous_information.pdf

Supporting Information

Real-Time NMR Studies of Oxyamine Ligations of Reducing Carbohydrates under Equilibrium Conditions

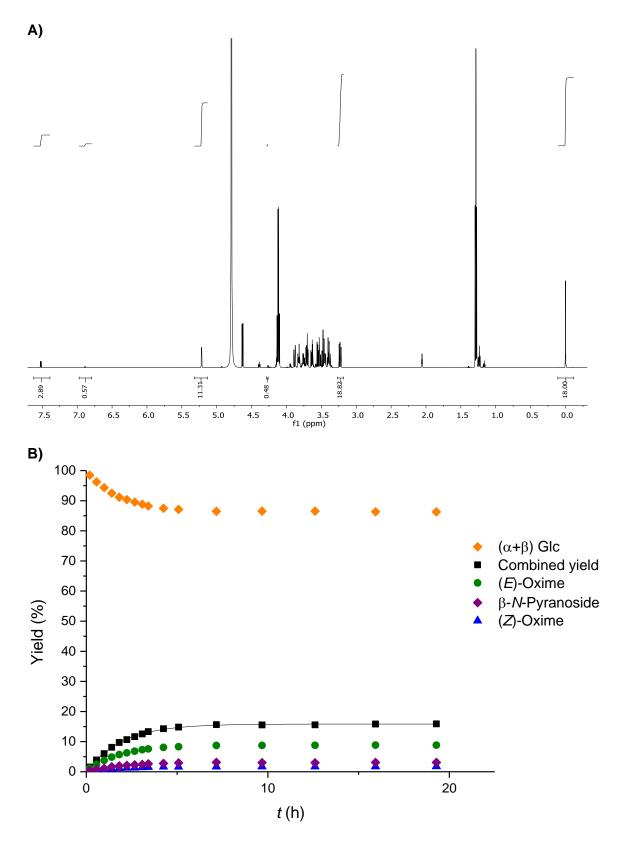
Oliver R. Baudendistel,[†] Daniel E. Wieland,[†] Magnus S. Schmidt, and Valentin Wittmann^{*[a]}

[†] These authors contributed equally to this work and are listed in alphabetical order.

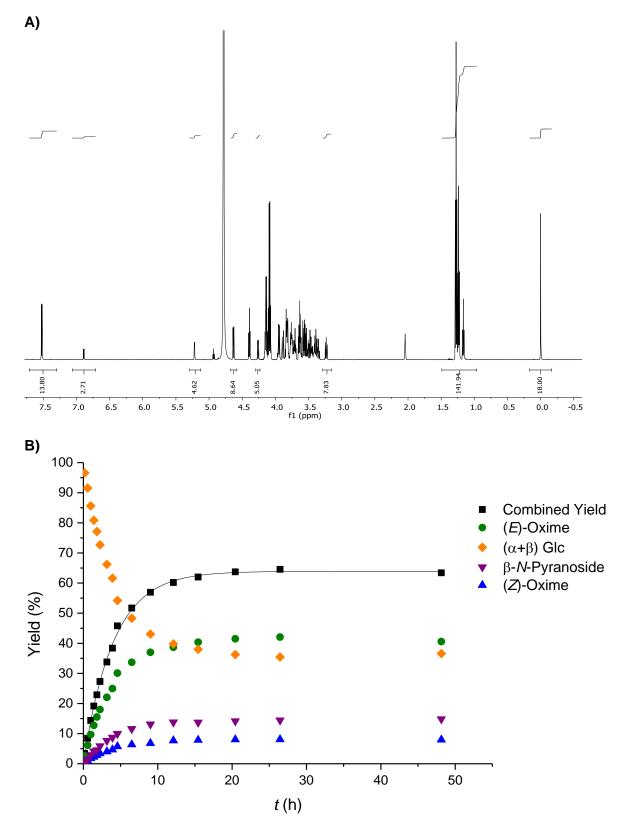
 [a] O. R. Baudendistel, D. Wieland, Dr. M. S. Schmidt, Prof. Dr. V. Wittmann University of Konstanz
 Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB)
 78457 Konstanz (Germany)
 Fax: (+49) 7531-88-4573
 E-mail: mail@valentin-wittmann.de

Contents

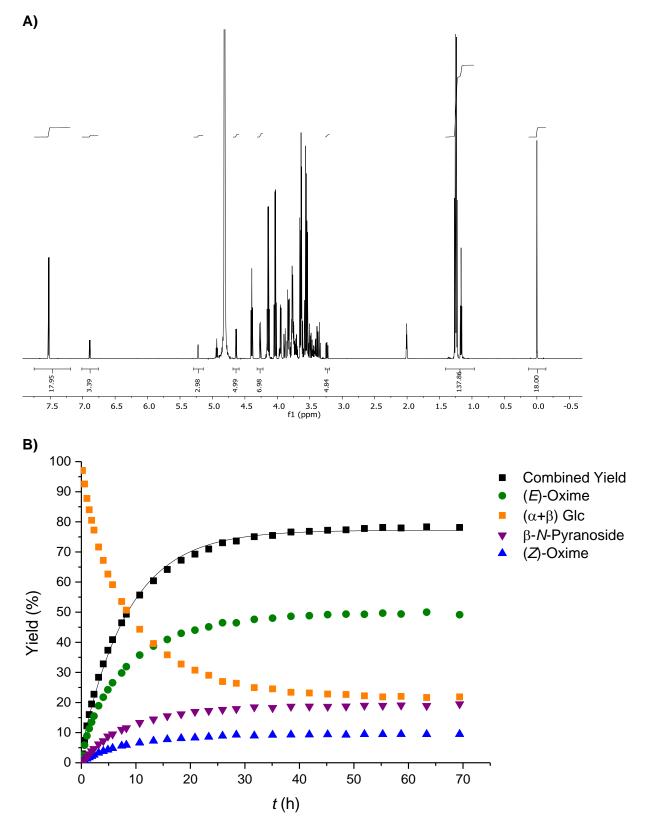
General	S2
Reaction of Glc and O-Ethylhdroxylamine (11)	S3
Reaction of GlcNAc with O-Ethylhdroxylamine (11)	S12
Reaction of 2-Deoxyglucose with O-Ethylhdroxylamine (11)	S17
Reaction of Mannose with O-Ethylhdroxylamine (11)	S19
Reaction of <i>N</i> , <i>N</i> '-Diacetylchitobiose with <i>O</i> -Ethylhdroxylamine (11)	S23
Reaction of Glucose with O-Benzylhdroxylamine (18)	S25
Reaction of GlcNAc with O-Benzylhdroxylamine (18)	S27
Reaction of 2-Deoxyglucose with O-Benzylhdroxylamine (18)	S29
Reaction of Mannose with O-Benzylhdroxylamine (18)	S31
Reaction of Glucose with 2,2,2-Trifluoroethoxyamine (19)	S33
Reaction of Glucose with O-Ethyl-N-Methylhydroxylamine (20)	S35
Reaction of GlcNAc with O-Ethyl-N-Methylhydroxylamine (20)	S45
Reaction of 2-Deoxyglucose with O-Ethyl-N-Methylhydroxylamine (20)	S47
Reaction of Mannose with O-Ethyl-N-Methylhydroxylamine (20)	S49
Reaction of N,N'-Diacetylchitobiose with O-Ethyl-N-Methylhydroxylamine (20)	S51
Determination of T1 times	S53

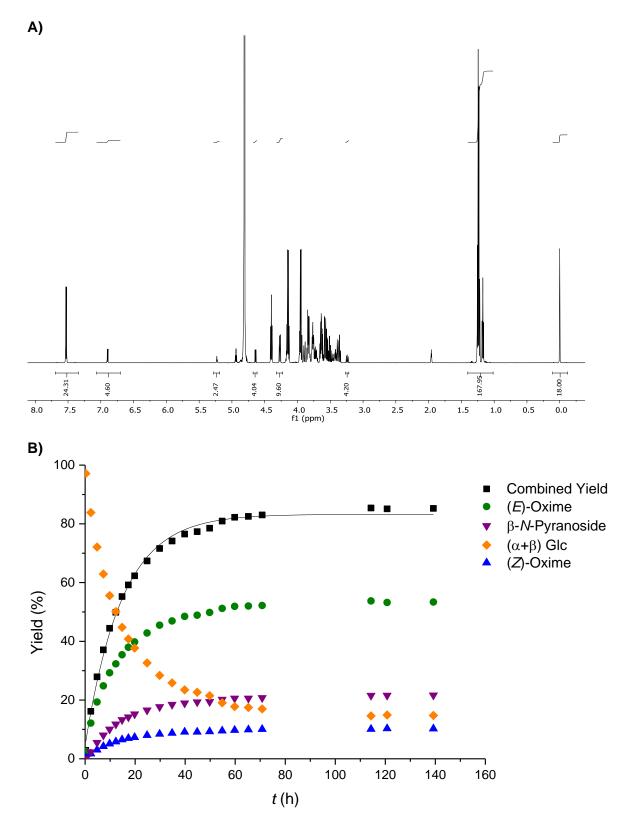

General

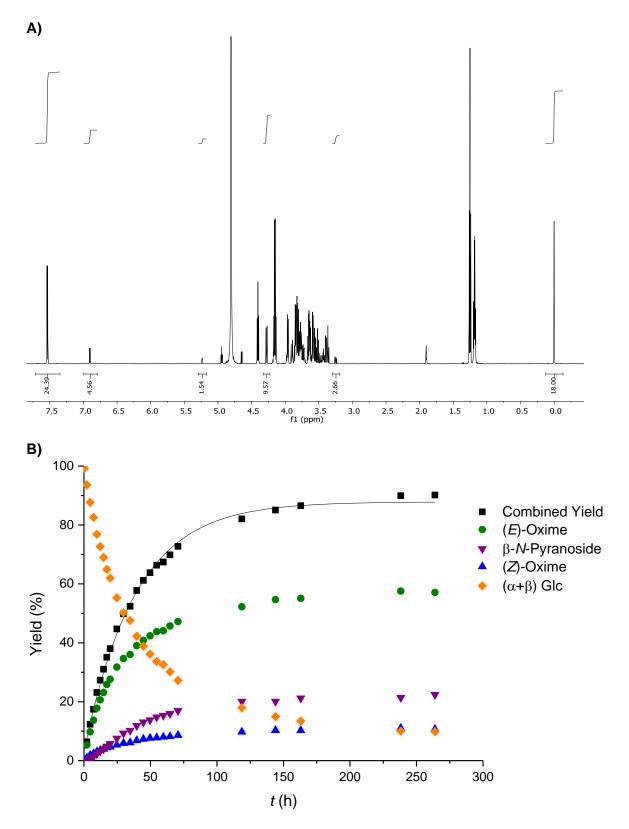
All NMR spectra were recorded in 500 mM deuterated acetate buffer using a Bruker Avance III 600 instrument. ¹H chemical shifts are referenced to the TSP signal ($\delta_{\rm H} = 0.00$ ppm). ¹³C chemical shifts are referenced to [D₄]acetic acid ($\delta_{\rm C} = 21.0$ ppm). The multiplicity of pseudo triplets is abbreviated "t". ¹*J*_{C1-H1} coupling constants were determined from non-decoupled HSQC NMR spectra. In Figures S1B–S7B, S9B–S11B, S13B–S21B, S23B–S29B, and S31B–S33B exponential curve fitting is shown for the combined yields.

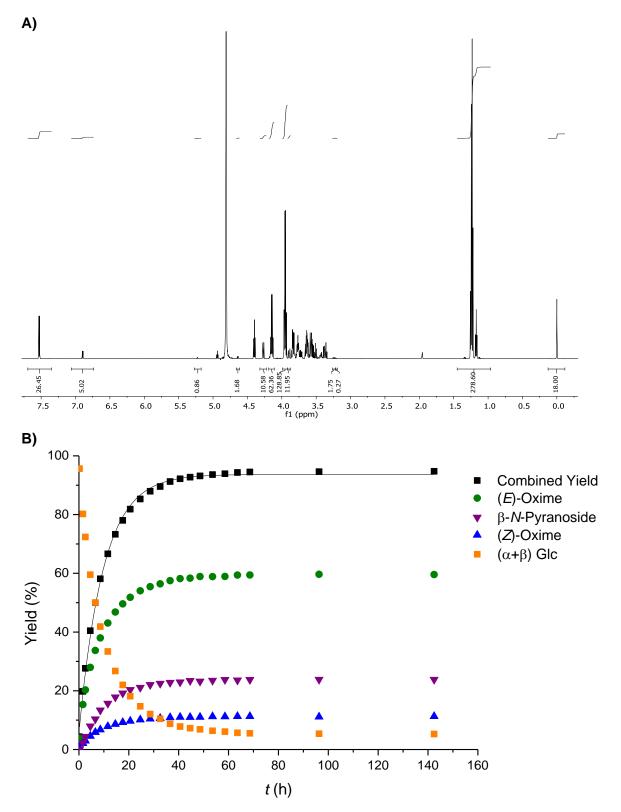

Reaction of Glc with O-Ethylhydroxylamine (11)

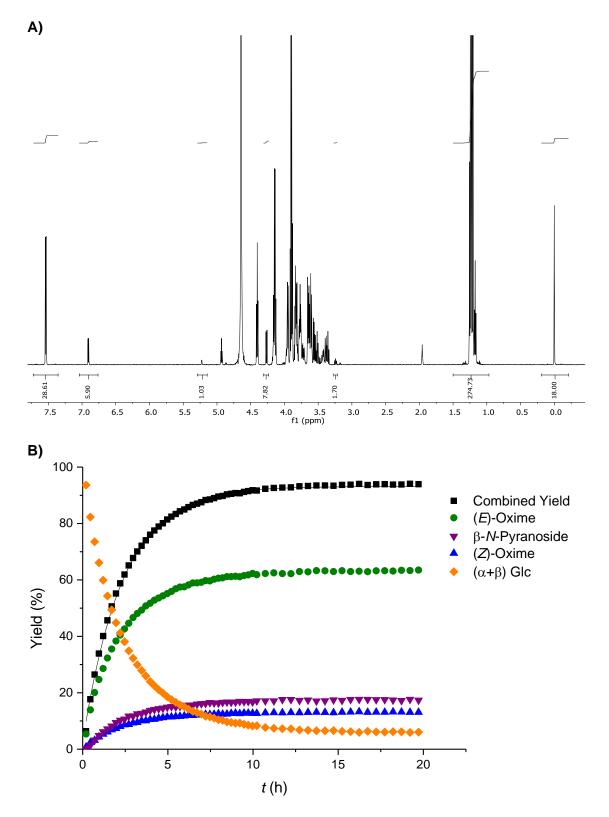
O-ethylhdroxylamine (11).						
HO HO HO HO Glucose	~ОН + H ₂ N−0		HO HO HO HO HO HO HO HO HO HO HO HO HO H	OEt HC OH N + HO- O H H Dxime f		
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)	
(<i>E</i>)-Oxime	H-1	7.53	d, 6.7	C-1	150.5	
	H-2	4.40	"t", 6.9	C-2	70.2	
	H-3	3.95	dd, 7.1, 1.4	C-3	71.3	
	H-4	3.58	dd, 8.4, 1.4	C-4	70.6	
(<i>Z</i>)-Oxime	H-1	6.90	d, 6.3	C-1	151.6	
	H-2	4.94	"t", 6.2	C-2	65.9	
	H-3	3.95	dd, 6.2, 2.6	C-3	71.2	
	H-4	3.58	m	C-4	70.6	
β- <i>N</i> -	H-1	4.27	d, 9.2	C-1	89.6	
Pyranoside	H-2	3.36	"t", 9.1	C-2	69.6	
	H-3	3.52	"t", 9.1	C-3	77.2	
	H-6a	3.90	dd, 12.4, 2.0	C-6	60.4	


Table S1. Characteristic NMR data of products obtained by the reaction of glucose with *O*-ethylhdroxylamine (**11**).


Figure S1. Ligation reaction of glucose with 1.2 equiv of *O*-ethylhdroxylamine (**11**) at 27 °C and pH 3. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.


Figure S2. Ligation reaction of glucose with 1.2 equiv of *O*-ethylhdroxylamine (**11**) at 27 °C and pH 4. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.


Figure S3. Ligation reaction of glucose with 1.2 equiv of *O*-ethylhdroxylamine (**11**) at 27 °C and pH 4.5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.


Figure S4. Ligation reaction of glucose with 1.2 equiv of *O*-ethylhdroxylamine (**11**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

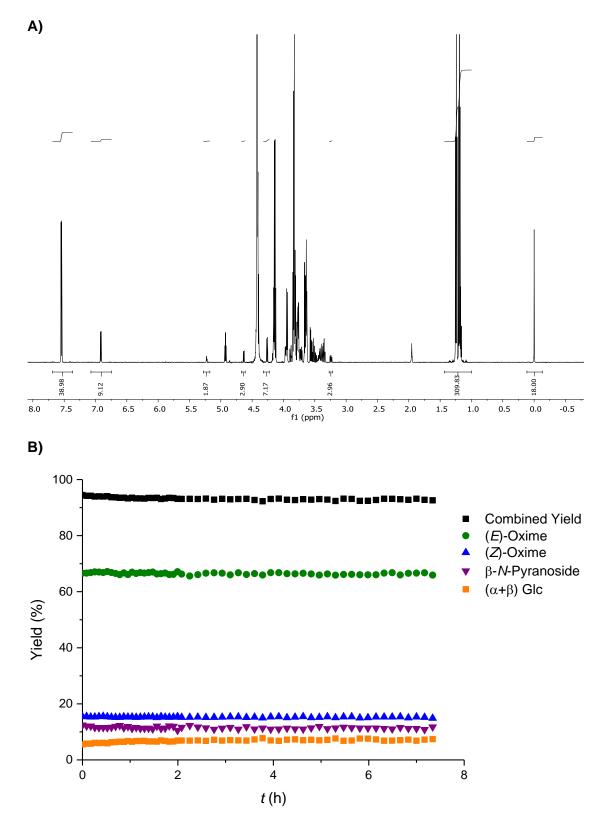

Figure S5. Ligation reaction of glucose with 1.2 equiv of *O*-ethylhdroxylamine (**11**) at 27 °C and pH 6. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

Figure S6. Ligation reaction of glucose with 2.0 equiv of *O*-ethylhdroxylamine (**11**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

Figure S7. Ligation reaction of glucose with 2.0 equiv of O-ethylhdroxylamine (**11**) at 39 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

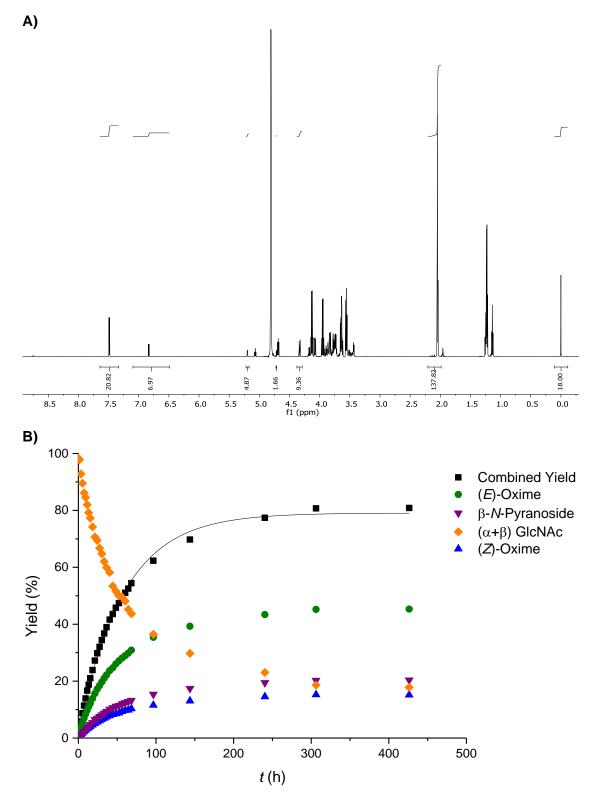
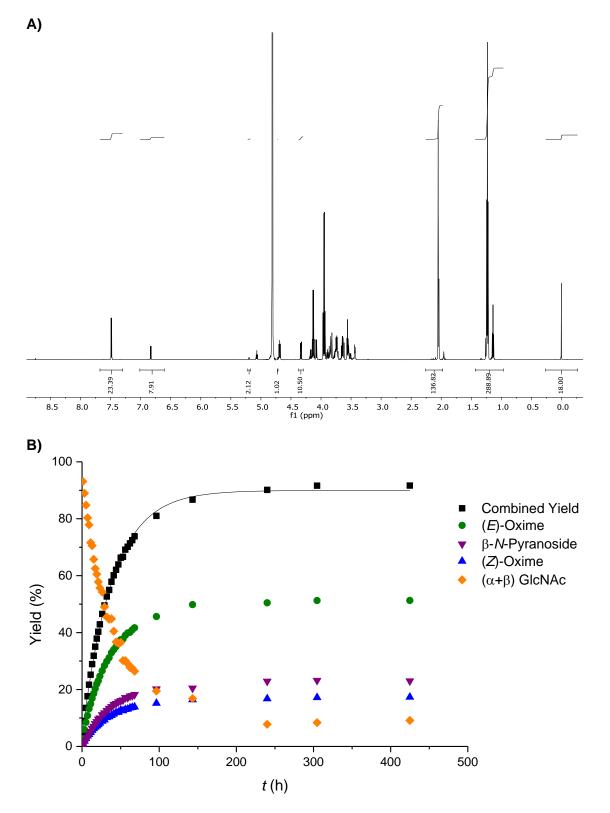
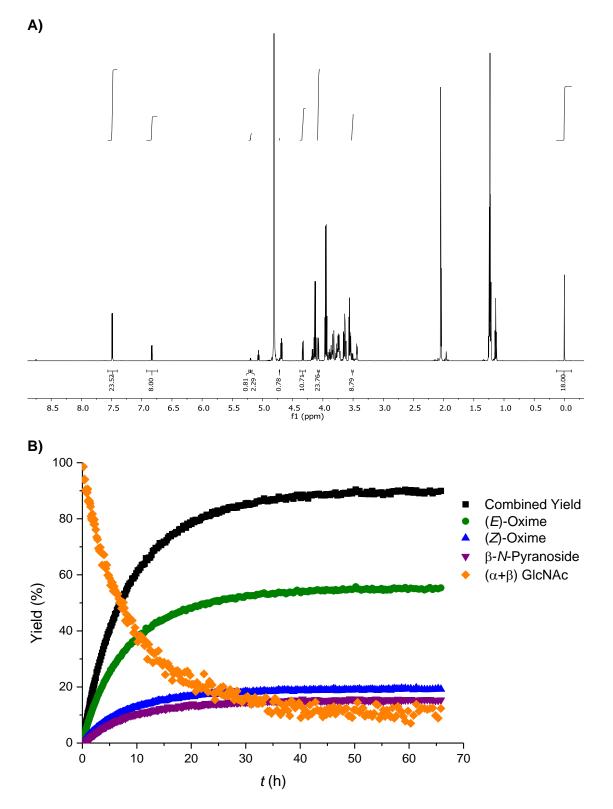


Figure S8. Ligation reaction of glucose with 2.0 equiv of *O*-ethylhdroxylamine (**11**) at pH 5. Reequilibration at 60 °C after the sample had been equilibrated at 39 °C. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.


Reaction of GlcNAc with *O*-Ethylhdroxylamine (11)

O-ethylhdroxylamine (11)							
	∽OH + H ₂ N−(DEt	HO HO HO AcHN H HO AcHN H	HO HO HO AcHN	OEt HO DH N + HO- N + HO HO H	1	
GlcNAc			(<i>E</i>)-Oxime	(Z)-O	xime β	- <i>N</i> -Pyranoside	
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-1}	_H (Hz)	Carbon	δ (C) (ppm)	
(<i>E</i>)-Oxime	H-1	7.49	d, 6.2		C-1	148.8	
	H-2	4.71	"t", 6.7		C-2	51.5	
	H-3	4.08	dd, 7.4, 1.7	7	C-3	69.5	
(<i>Z</i>)-Oxime	H-1	6.83	d, 6.4		C-1	149.0	
	H-2	5.07	"t", 6.6		C-2	48.2	
	H-3	4.13	m		C-3	69.7	
β- <i>N</i> -	H-1	4.33	d, 9.8		C-1	88.2	
Pyranoside	H-2	3.87	m		C-2	70.2	


Table S2. Characteristic NMR data of products obtained by the reaction of GlcNAc with *O*-ethylhdroxylamine (**11**)

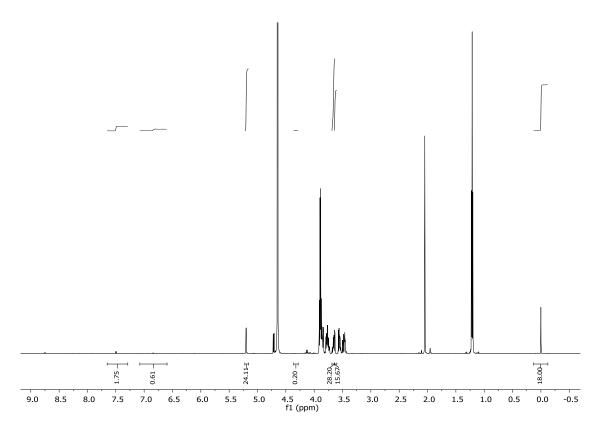

Figure S9. Ligation reaction of GlcNAc with 1.2 equiv of O-ethylhdroxylamine (**11**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

Figure S10. Ligation reaction of GlcNAc with 2.0 equiv of *O*-ethylhdroxylamine (**11**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

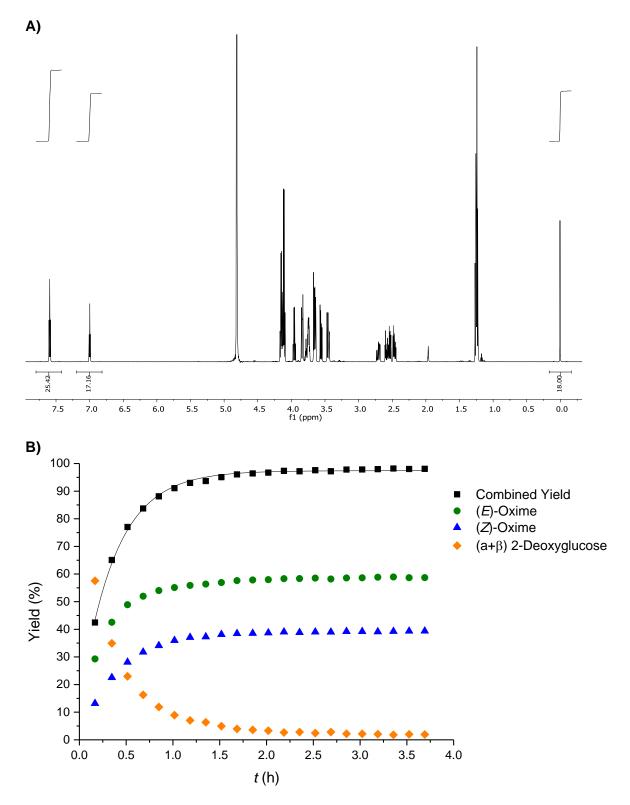
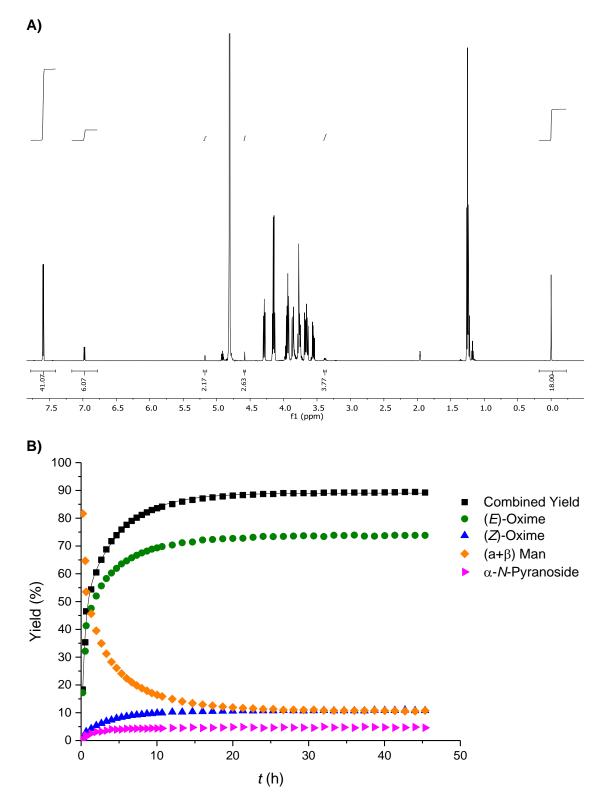

Figure S11. Ligation reaction of GlcNAc with 2.0 equiv of *O*-ethylhdroxylamine (**11**) at 39 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

Figure S12. Ligation reaction of GlcNAc with 2.0 equiv of *O*-ethylhdroxylamine (**11**) at 21 °C and pH 5. ¹H NMR spectrum (600 MHz) after equilibration.

Table S3. Characteristic NMR data of products obtained by the reaction of 2-deoxyglucose with O-ethylhdroxylamine (11).							
HO HO HO	\ _	H + H₂N−OEt ←	HO HO HO HO HO HO HO OH N OEt	+ HO HO	OH N H		
2-0	Deoxyglucose		(<i>E</i>)-Oxime	(Z)-C	Dxime		
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)		
(<i>E</i>)-Oxime	H-1	7.58	"t", 6.5	C-1	151.1		
	H-2a	2.49-2.44	m	C-2	33.1		
	H-2b	2.64-2.51	m				
	H-3	4.11	m	C-3	68.9		
	H-4	3.46	dd, 8.5, 1.9	C-4	63.4		
	H-5	3.81-3.72	m	C-5	72.0		
	H-6a	3.86-3.82	dd, 11.8, 1.8	C-6	64.9		
	H-6b	3.68-3.62	m				
(<i>Z</i>)-Oxime	H-1	6.99	"t", 5.5	C-1	150.7		
	H-2a	2.74-2.66	m	C-2	29.7		
	H-2b	2.64-2.51	m				
	H-3	4.14	m	C-3	69.2		
	H-4	3.44	dd, 8.4, 2.1	C-4	63.7		
	H-5	3.81-3.72	m	C-5	72.5		
	H-6a	3.86-3.82	m	C-6	64.0		
	H-6b	3.68-3.62	m				


Reaction of 2-Deoxyglucose with *O*-Ethylhdroxylamine (11)

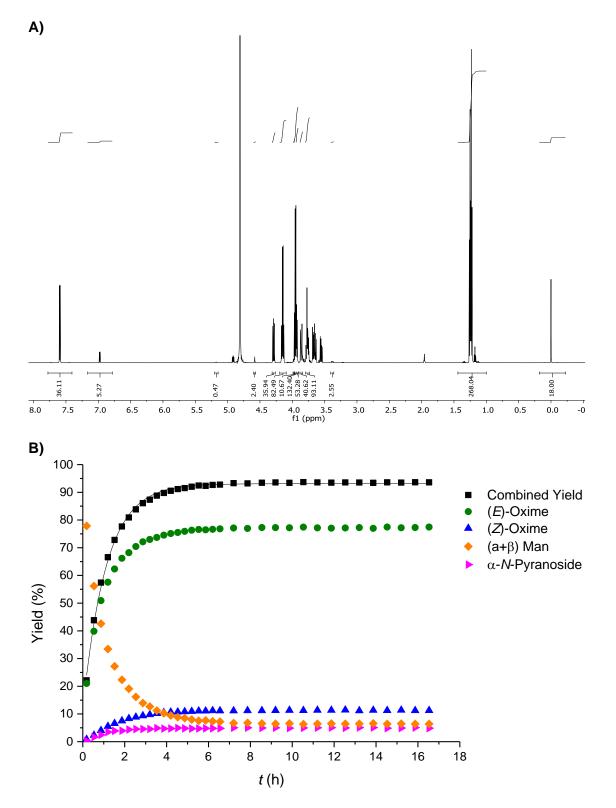

Figure S13. Ligation reaction of 2-deoxyglucose with 1.2 equiv of O-ethylhdroxylamine (**11**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

Table S4. Cha O-ethylhdroxyla		•	oducts obtained by the	reaction of ma	annose with
HO OH HO OH	+ H ₂ N−OEt	HO HO- HO		OH OEt OH N + F	
Mannose			(E)-Oxime (2	Z)-Oxime	α- <i>N</i> -Pyranoside
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)
(<i>E</i>)-Oxime	H-1	7.59	d, 6.9	C-1	151.8
	H-2	4.29	dd, 8.1, 6.9	C-2	69.6
	H-3	3.93	m	C-3	71.4
	H-4	3.78-3.74	m	C-4	70.2
	H-5	3.78-3.74	m	C-5	71.8
	H-6a	3.86	dd, 12.0, 2.4	C-6	64.2
	H-6b	3.67	dd, 12.0, 5.7		
(<i>Z</i>)-Oxime	H-1	6.98	d, 6.8	C-1	151.7
	H-2	4.91	dd, 7.6, 6.9	C-2	63.5
	H-3	3.93	m	C-3	70.6
α- <i>N</i> - Pyranoside	H-1	4.58	d, 0.7	C-1	87.1

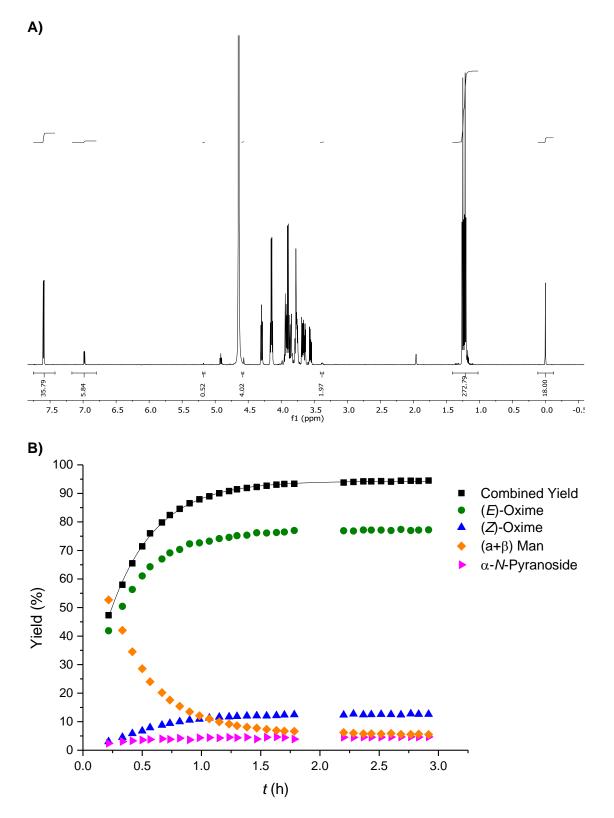

Reaction of Mannose with O-Ethylhdroxylamine (11)

Figure S14. Ligation reaction of mannose with 1.2 equiv of *O*-ethylhdroxylamine (**11**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

Figure S15. Ligation reaction of mannose with 2.0 equiv of *O*-ethylhdroxylamine (**11**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

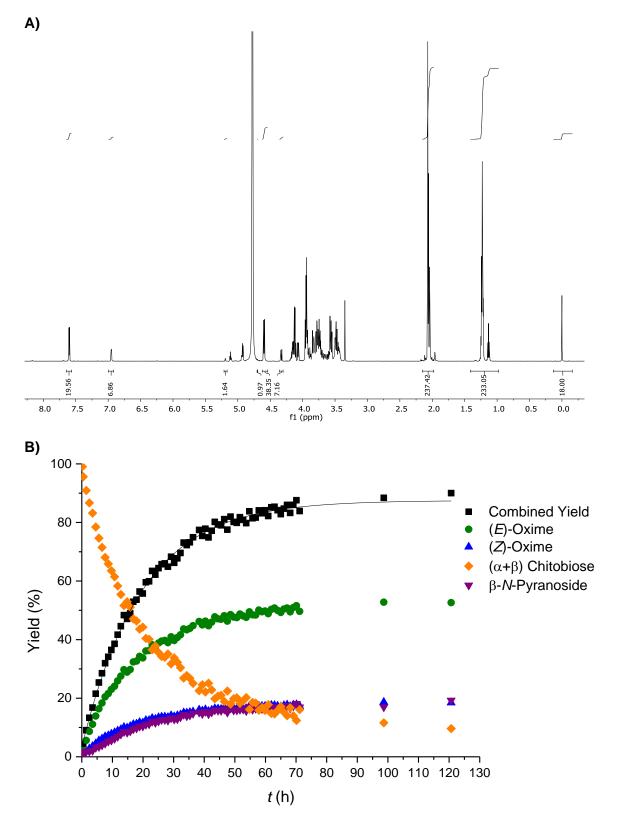
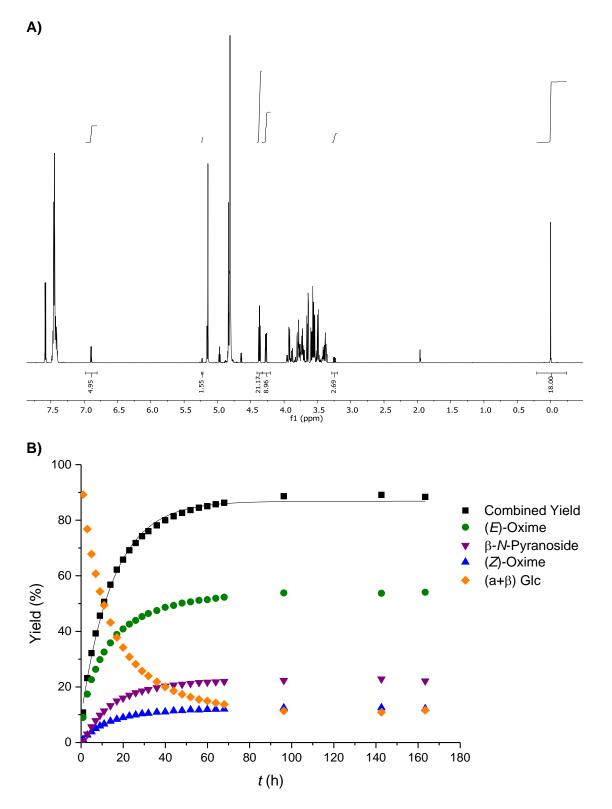


Figure S16. Ligation reaction of mannose with 2.0 equiv of *O*-ethylhdroxylamine (**11**) at 39 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

Reaction of *N*,*N*'-Diacetylchitobiose with *O*-Ethylhdroxylamine (11)

Table S5. Characteristic NMR data of products obtained by the reaction of N,N'-diacetylchitobiose with *O*-ethylhdroxylamine (**11**).

HO HO ACHN N,N-Diacetylchito	О́ → OH + H ₂ N CHN biose	$-OEt \longrightarrow HO HO Act$	(E)-Oxime (E)-Oxime (Z)-Oxime (Z)-	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ } \\ \end{array} } \\ \end{array}	β -N-Pyranoside
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)
(<i>E</i>)-Oxime	H-1	7.60	d, 5.3	C-1	149.6
	H-2	4.93	dd, 7.5, 5.3	C-2	50.6
	H-3	4.07	dd, 7.5, 2.1	C-3	68.7
(<i>Z</i>)-Oxime	H-1	6.95	d, 5.6	C-1	149.5
	H-2	5.11	"t", 5.9	C-2	47.9
	H-3	4.16	m	C-3	68.2
β- <i>N</i> -	H-1	4.33	d, 9.8	C-1	88.1
Pyranoside	H-2	3.88	m	C-2	69.1


Figure S17. Ligation reaction of *N*,*N*'-diacetylchitobiose with 2.0 equiv of *O*-ethylhdroxylamine (**11**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

O-benzylhdroxy	/lamine (18	s).			
но Но Но Но Но	+ H ₂ N-OBn -	HO- HO-7 HO-7		OBn Ho OH N + HO O H H	\
Glucose		((<i>E</i>)-Oxime (<i>Z</i>)-O	Dxime	β- <i>N</i> -Pyranoside
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)
(<i>E</i>)-Oxime	H-1	7.58	d, 6.8	C-1	152.8
	H-2	4.37	dd, 7.2, 6.8	C-2	70.9
	H-3	3.92	dd, 7.2, 1.7	C-3	71.5
	H-4	3.49	dd, 8.5, 1.8	C-4	70.7
	H-5	3.72	ddd, 8.9, 6.2, 2.7	C-5	71.7
	H-6a	3.79	dd, 12.3, 2.7	C-6	63.5
	H-6b	3.58	dd, 12.3, 6.3		
(<i>Z</i>)-Oxime	H-1	6.90	d, 6.1	C-1	153.8
	H-2	4.97	"t", 6.1	C-2	67.2
	H-3	3.96	dd, 6.0, 2.6	C-3	71.1
	H-4	3.60-3.52	m	C-4	71.7
β- <i>Ν</i> -	H-1	4.27	d, 9.1	C-1	91.2
Pyranoside	H-2	3.44-3.35	m	C-2	-
	H-3	3.48	m	C-3	-
	H-4	3.76-3.69	m	C-4	-

 Table S6. Characteristic NMR data of products obtained by the reaction of glucose with

Reaction of Glucose with O-Benzylhdroxylamine (18)

S25

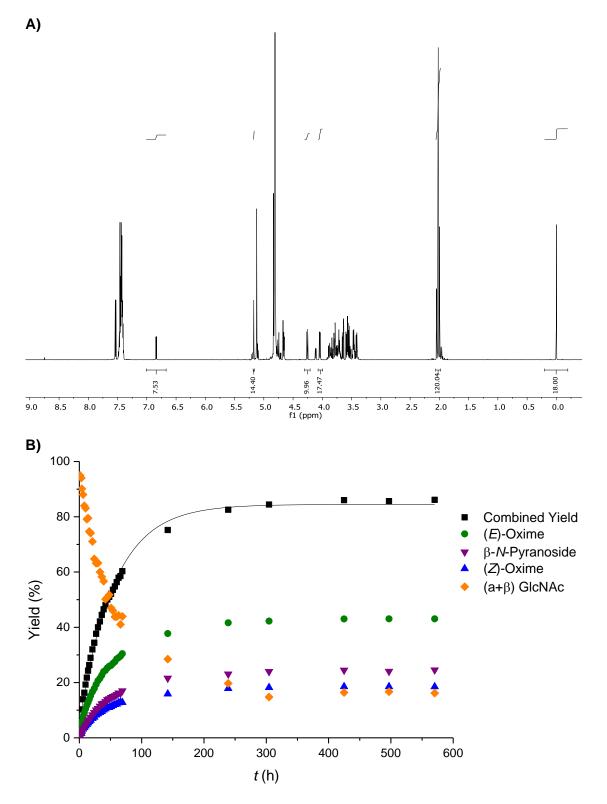


Figure S18. Ligation reaction of glucose with 1.2 equiv of *O*-benzylhdroxylamine (**18**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

Reaction of GlcNAc with O-Benzylhdroxylamine (18)

O-benzylhdroxylamine (18).							
HO HO HO AcHN	$_{\sim}$ OH + H ₂ N	-OBn	HO HO HO ACHN H	HO HO HO AcHN	HO~ + HO∽ + HO-	AcHN H H OBn	
GlcNAc			(<i>E</i>)-Oxime	(Z)-Oxime	β-/	V-Pyranoside	
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H}	(Hz) C	Carbon	δ (C) (ppm)	
(<i>E</i>)-Oxime	H-1	7.53	d, 6.0		C-1	152.8	
	H-2	4.66-4.64	66-4.64 dd, 7.3, 6.4		C-2	51.7	
	H-3	4.04	dd, 7.6, 1.8		C-3	69.1	
	H-4	3.48-3.44	m		C-4	75.7	
(<i>Z</i>)-Oxime	H-1	6.84	d, 6.3		C-1	153.8	
	H-2	5.11	"t", 6.7		C-2	48.4	
	H-3	4.11	dd, 7.0, 2.5		C-3	68.5	
	H-4	3.45	m		C-4	73.9	
β- <i>N</i> -	H-1	4.26	d, 9.9		C-1	90.1	
Pyranoside	H-2	3.82	m		C-2	-	

 Table S7. Characteristic NMR data of products obtained by the reaction of GlcNAc with

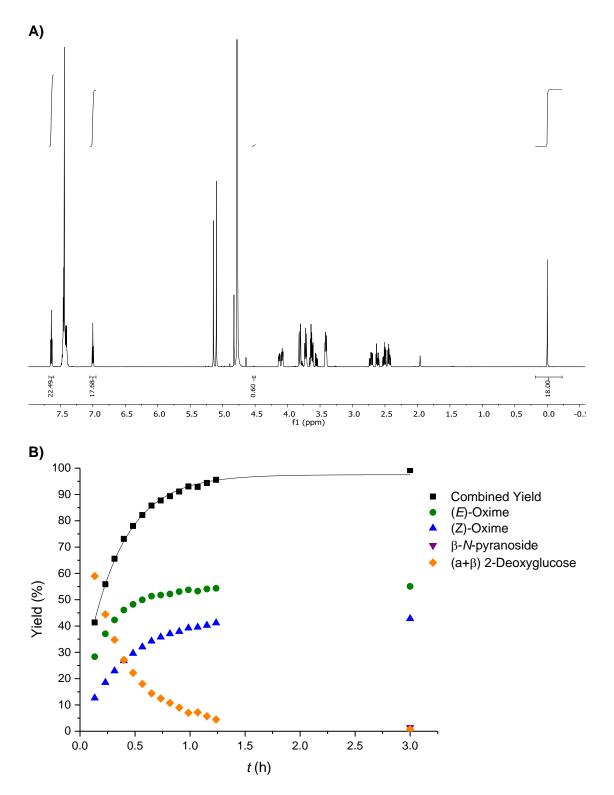


Figure S19. Ligation reaction of GlcNAc with 1.2 equiv of *O*-benzylhdroxylamine (**18**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

Reaction of 2-Deoxyglucose with	O-Benzylhdroxylamine (18	3)
---------------------------------	---------------------------------	----

Table S8. Characteristic NMR data of products obtained by the reaction of 2-deoxyglucose with O-benzylhdroxylamine (**18**). Determined ${}^{1}J_{C1-H1}$: 162.8 Hz (*E*)-Oxime, 175.4 Hz (*Z*)-Oxime

HO HO HO	OH + H₂N−OB	HO- HO- HO-	HO HO HO HO HO HO HO HO HO HO HO HO HO H	DBn HO N + HO HO	H OBn
2-Deoxyglucos	Se		(<i>E</i>)-Oxime (<i>Z</i>)-Oxime	e β- / -	Pyranoside
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)
(<i>E</i>)-Oxime	H-1	7.64	"t", 6.4	C-1	151.2
	H-2a	2.51	ddd,14.7, 8.5, 6,6	C-2	32.7
	H-2b	2.44	ddd, 14.7, 6.3, 5,1		
	H-3	4.08	ddd, 8.5, 5.1, 2.0	C-3	66.8
	H-4	3.43-3.39	m	C-4	71.6
	H-5	3.74-3.70	m	C-5	70.3
	H-6a	3.81-3.79	m	C-6	62.3
	H-6b	3.66-3.54	m		
(<i>Z</i>)-Oxime	H-1	7.00	"t", 5.5	C-1	151.7
	H-2a	2.61	d"t", 16.1, 5.0	C-2	29.5
	H-2b	2.72	ddd, 16.1, 9.0, 5.5		
	H-3	4.13	ddd, 9.0, 5.0, 2.2	C-3	66.5
	H-4	3.43-3.39	m	C-4	72.0
	H-5	3.74-3.70	m	C-5	70.3
	H-6a	3.83-3.81	m	C-6	62.3
	H-6b	3.66-3.54	m		
β- <i>N</i> - Pyranoside	H-1	4.51	dd, 11.1, 2.0	C-1	-

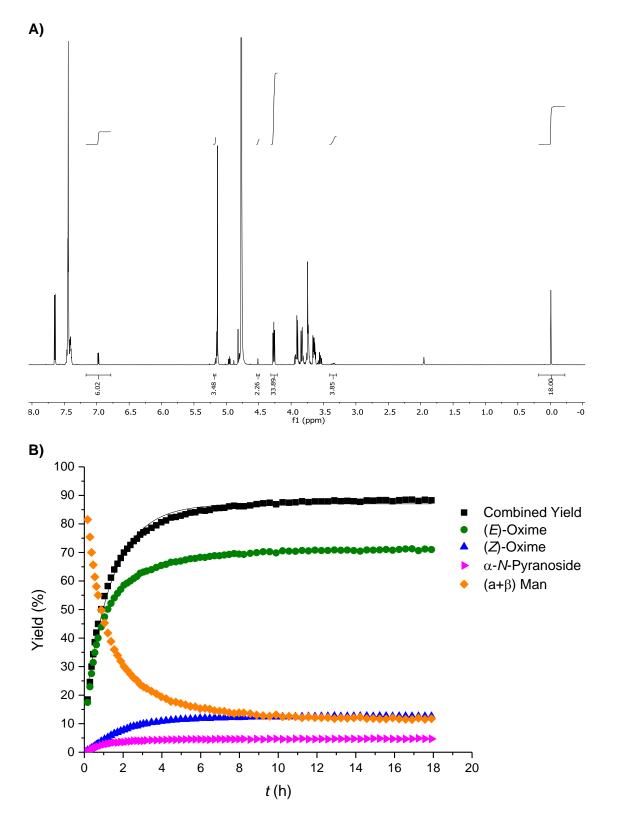


Figure S20. Ligation reaction of 2-deoxyglucose with 1.2 equiv of *O*-benzylhdroxylamine (**18**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

Reaction of Mannose with O-Benzylhdroxylamine (18)

Table S9 Characteristic NMR data of products obtained by the reaction of mannose with O-Benzylhdroxylamine (**18**).

НО ОН НО ОН +	H₂N−OBn ≂	HU	OH OH N OBn H OBn H OH HO HO	HO-	
Mannose		(E)-Oxime (Z)-Oxi	me α-	-N-Pyranoside
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)
(<i>E</i>)-Oxime	H-1	7.64	d, 6.9	C-1	153.9
	H-2	4.27	dd, 8.1, 6.9	C-2	69.3
	H-3	3.90	dd, 8.1, 1.0	C-3	71.3
	H-4	3.69	m	C-4	67.4
	H-5	3.77-3.71	m	C-5	71.3
	H-6a	3.84	dd, 12.0, 2.3	C-6	63.8
	H-6b	3.67-3.62	m		
(<i>Z</i>)-Oxime	H-1	6.98	d, 6.7	C-1	153.8
	H-2	4.95	dd, 7.6, 6.8	C-2	77.9
	H-3	3.953.92	m	C-3	71.0
α- <i>N</i> - Pyranoside	H-1	4.51	d, 1.0	C-1	88.5

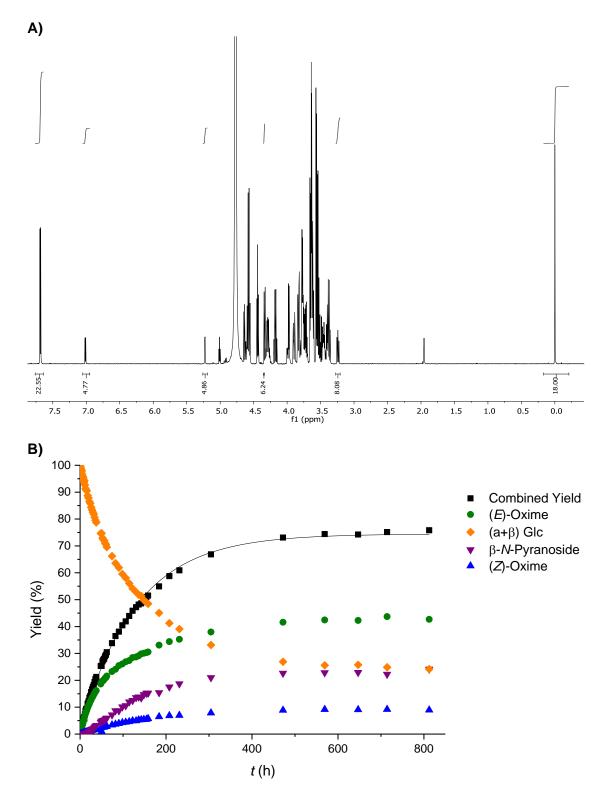
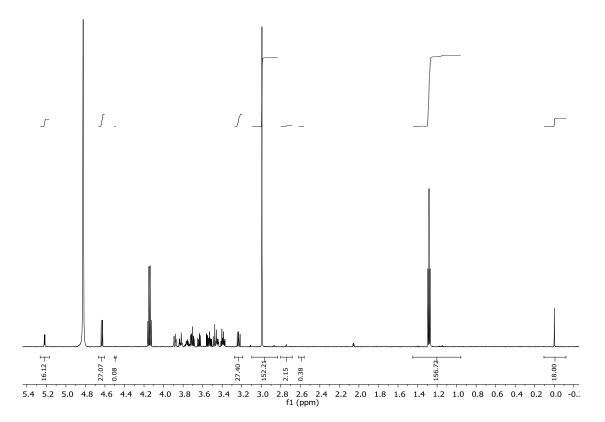
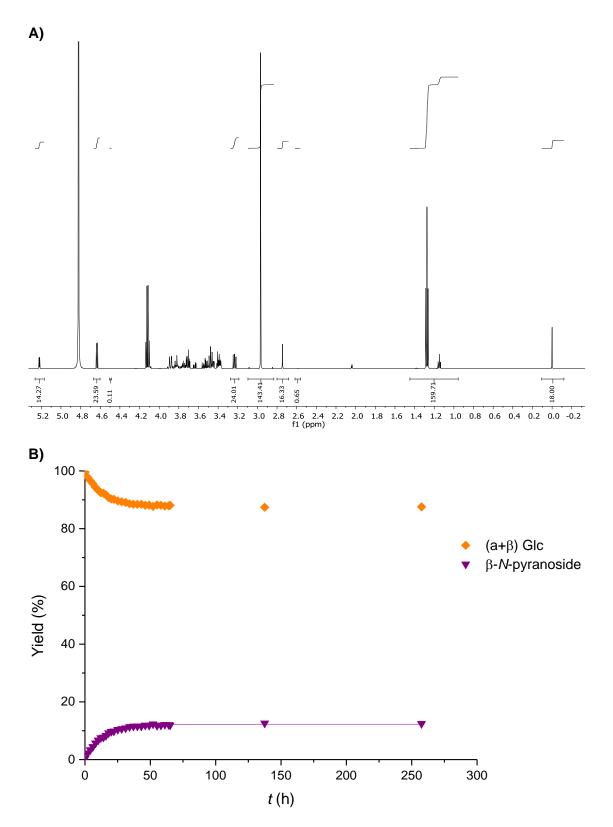


Figure S21. Ligation reaction of mannose with 1.0 equiv of *O*-benzylhdroxylamine (**18**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

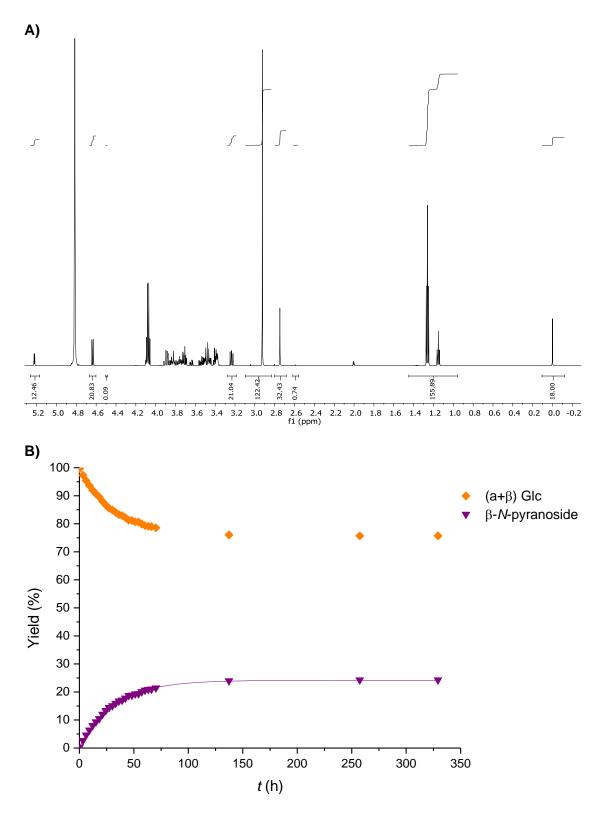
2,2,2-trifluoroethoxyamine (19).					
но но 0 ~0 + н	₂ N-0 - CF ₃ -		HO H	CF ₃ HO- + HO-¬ HO-¬	HO H HO H CF3
Glucose		(<i>E</i>)-O>		β-	N-Pyranoside
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)
(<i>E</i>)-Oxime	H-1	7.68	d, 6.4	C-1	154.2
	H-2	4.44	dd, 6.9, 6.4	C-2	71.2
	H-3	3.97	dd, 7.0, 1.8	C-3	72.1
	H-4	3.59	dd, 8.5, 1.8	C-4	71.1
	H-5	3.79-3.75	m	C-5	72.0
	H-6a	3.85-3.81	m	C-6	63.9
	H-6b	3.67-3.59	m		
(<i>Z</i>)-Oxime	H-1	7.01	d, 6.2	C-1	155.7
	H-2	5.00	"t", 5.8	C-2	67.4
	H-3	4.00	dd, 5.8, 2.8	C-3	71.4
	H-6a	3.82-3.79	m	C-6	63.9
β- <i>Ν</i> -	H-1	4.34	d, 9.1	C-1	91.5
Pyranoside	H-2	3.38	dd, 9.1, 8.0	C-2	78.2
	H-3	3.51	"t", 9.1	C-3	77.9
	H-4	3.41-3.35	m	C-4	70.5
	H-5	3.48-3.41	m	C-5	78.4
	H-6a	3.92-3.87	m	C-6	61.8
	H-6b	3.72	m		

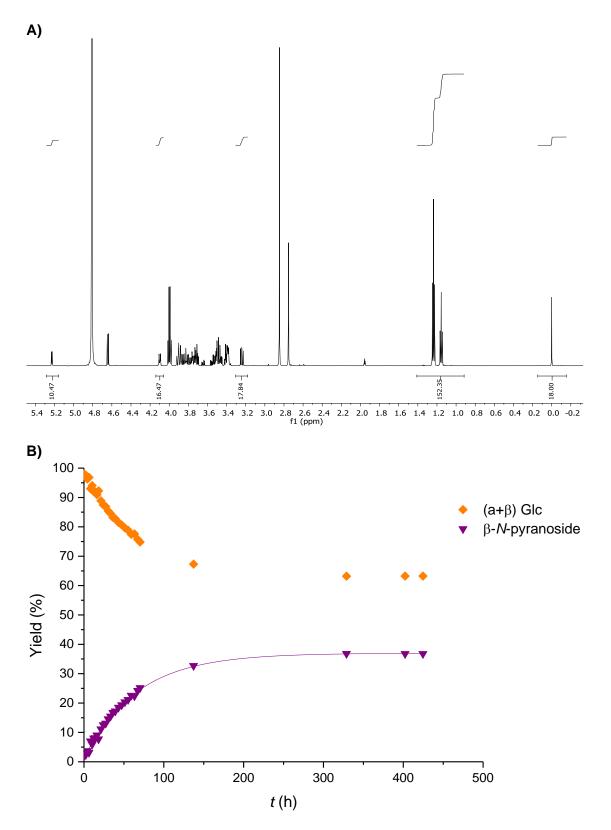
Reaction of Glucose with 2,2,2-Trifluoroethoxyamine (19)

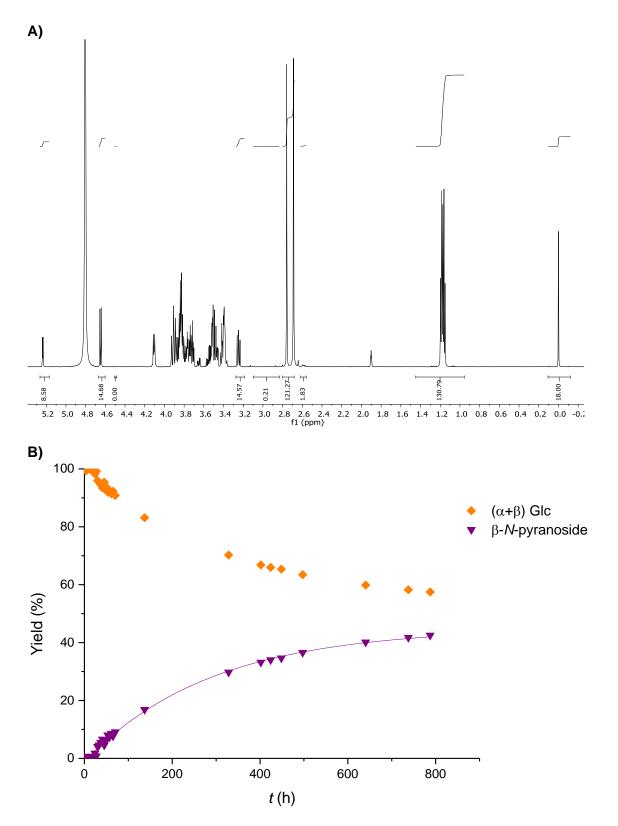

Table S10. Characteristic NMR data of products obtained by the reaction of glucose with

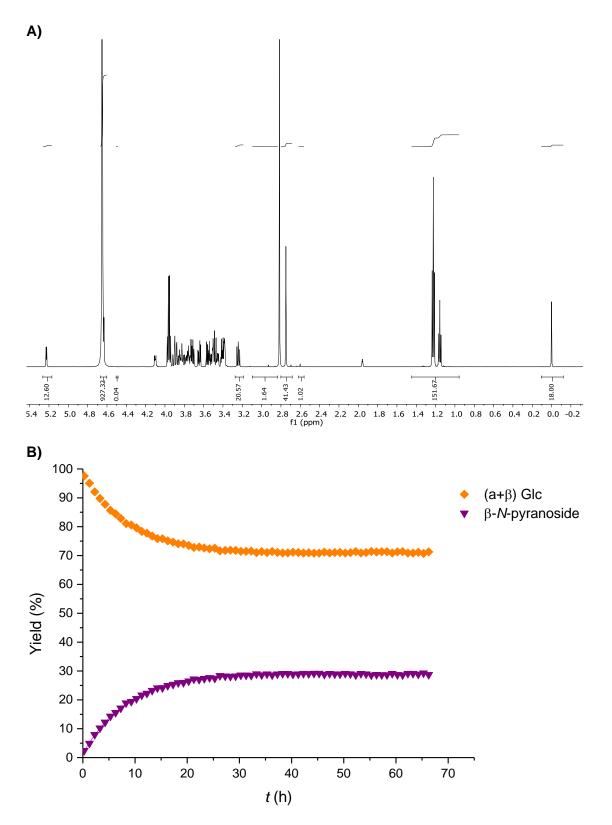

Figure S22. Ligation reaction of glucose with 1.2 equiv of 2,2,2-trifluoroethoxyamine (**19**) at 27 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

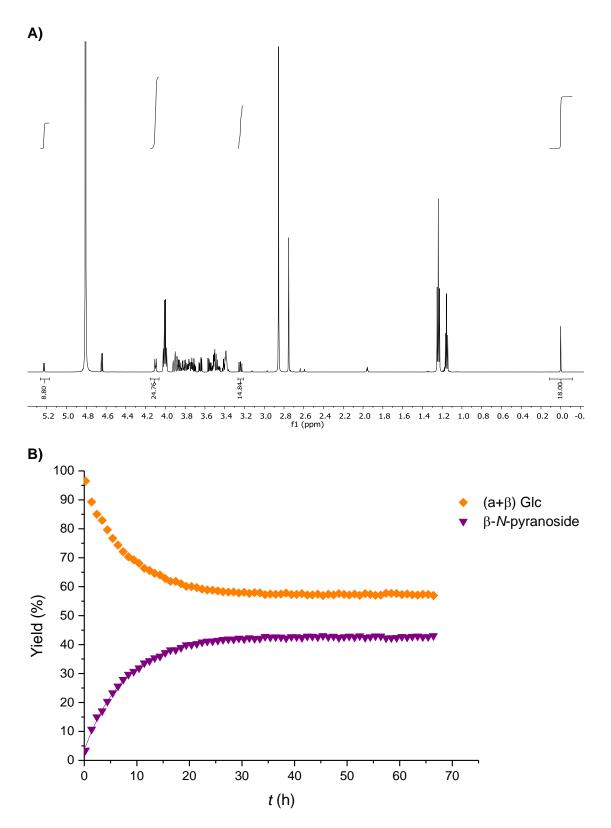
Reaction of Glucose with O-Ethyl-N-Methylhydroxylamine (20)

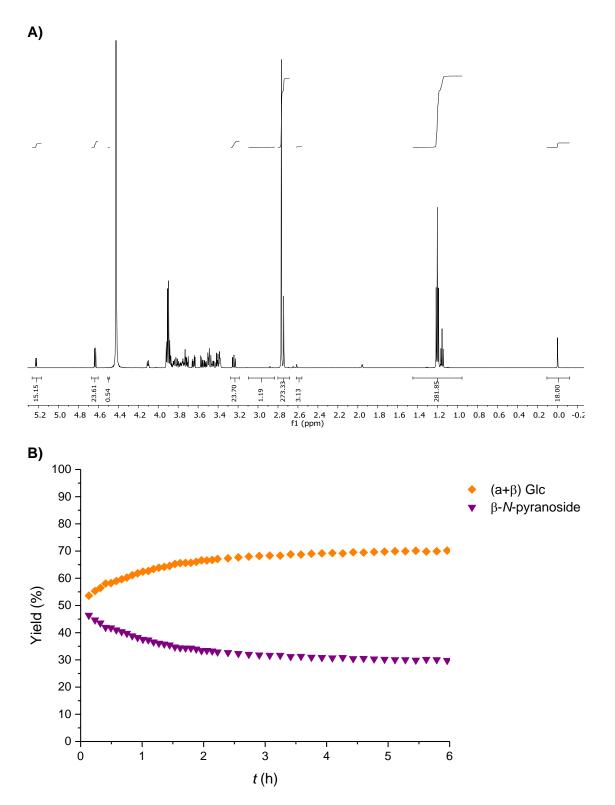

Table S11. Characteristic NMR data of product obtained by the reaction of glucose with O-ethyl-N-methylhydroxylamine (20).					
		HO HO HO HO HO		O N O H OEt	
		Glucose	β- <i>Ν</i> -Ρy	β- <i>N</i> -Pyranoside	
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)
β- <i>Ν</i> -	H-1	4.14-4.08	d, 8.6	C-1	91.9
Pyranoside	H-2	3.55-3.47	m	C-2	68.7
	H-3	3.42-3.35	m	C-3	75.9
	п-э	3.42-3.35	111	0-0	10.0


Figure S23. Ligation reaction of glucose with 1.2 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at 21 °C and pH 3. ¹H NMR spectrum (600 MHz) after equilibration.


Figure S24. Ligation reaction of glucose with 1.2 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at 21 °C and pH 4. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and product over time.


Figure S25. Ligation reaction of glucose with 1.2 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at 21 °C and pH 4.5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and product over time.


Figure S26. Ligation reaction of glucose with 1.2 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at 21 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and product over time.


Figure S27. Ligation reaction of glucose with 1.2 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at 21 °C and pH 6. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and product over time.

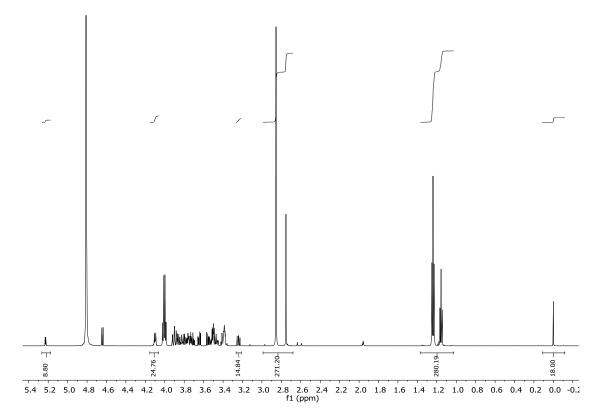

Figure S28. Ligation reaction of glucose with 1.2 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at 39 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and product over time.

Figure S29. Ligation reaction of glucose with 2.0 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at 39 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and product over time.

Figure S30. Ligation reaction of glucose with 2.0 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at pH 5. Re-equilibration at 60 °C after the sample had been equilibrated at 39 °C. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and product over time.

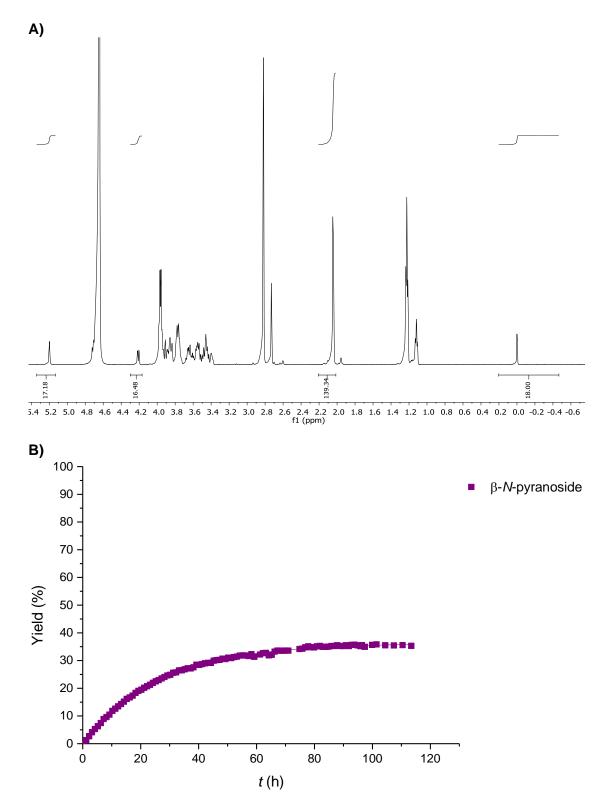


Figure S31. Ligation reaction of glucose with 2.0 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at 21 °C and pH 5. ¹H NMR spectrum (600 MHz) after equilibration.

Reaction of GIcNAc with O-Ethyl-N-Methylhydroxylamine (20)

Table S12. Characteristic NMR data of product obtained by the reaction of GlcNAc with O-ethyl- <i>N</i> -methylhydroxylamine (20).						
		HO HO ACHN	+ HN-OEt ← HO HO HO HO A			
		GlcNAc	β - Ν	-Pyranoside		
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)	
β- <i>N</i> -	H-1	4.20	d, 9.7	C-1	90.4	
Pyranoside	H-2	3.98	"t", 9.7	C-2	51.2	
	H-3	3.53	dd, 10.0, 8.9	C-3	74.3	
	H-4	3.44	m	C-4	68.5	
	H-5	3.40	ddd, 9.8, 5.3, 2.1	C-5	76.5	
	H-6	3.81-3.72	m	C-6	59.6	

Table S12 Characteristic NMR data of product obtained by the reaction of GlcNAc with O-ethyl-

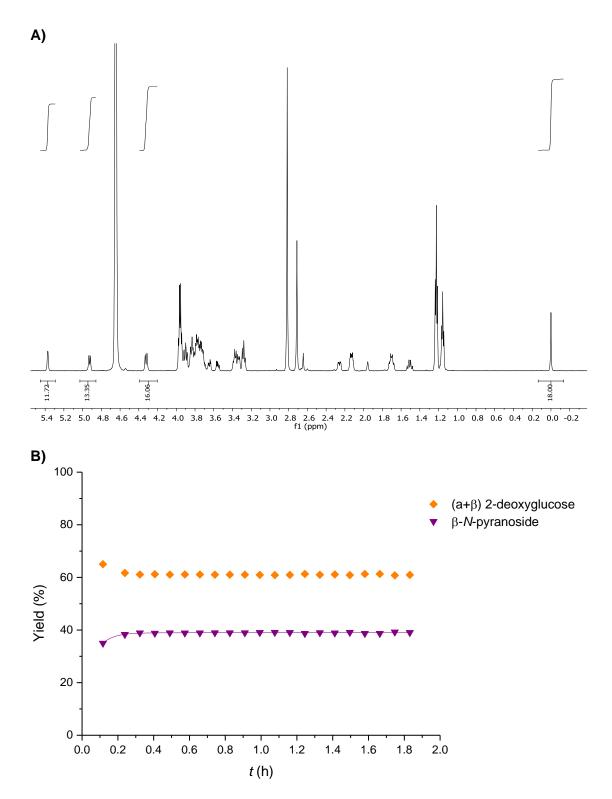


Figure S32. Ligation reaction of GlcNAc with 2.0 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at 39 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yield of product over time.

Reaction of 2-Deoxyglucose with *O*-Ethyl-*N*-Methylhydroxylamine (20)

Table S13. Characteristic NMR data of product obtained by the reaction of 2-deoxyglucose with *O*-ethyl-*N*-methylhydroxylamine (**20**).

	HO HO HO 2-Deo	yglucose	$\begin{array}{c} HO \\ HO \\ HO \\ HO \\ HO \\ HO \\ H \\ \beta - N - Pyrano \end{array}$		
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)
β- <i>N</i> -Pyranoside	H-1	4.34	dd, 11.0, 1.8	C-1	89.6
	H-2a	1.75-1.67	m	C-2	35.5
	H-2b	2.16-2.10	m		
	H-3	3.78-3.72	m	C-3	70.8
	H-4	3.78-3.72	m	C-4	70.4
	H-5	3.34	ddd, 9.7, 5.6, 2.2	C-5	77.1
	H-6a	3.78-3.72	m	C-6	-
	H-6b	3.78-3.72	m		

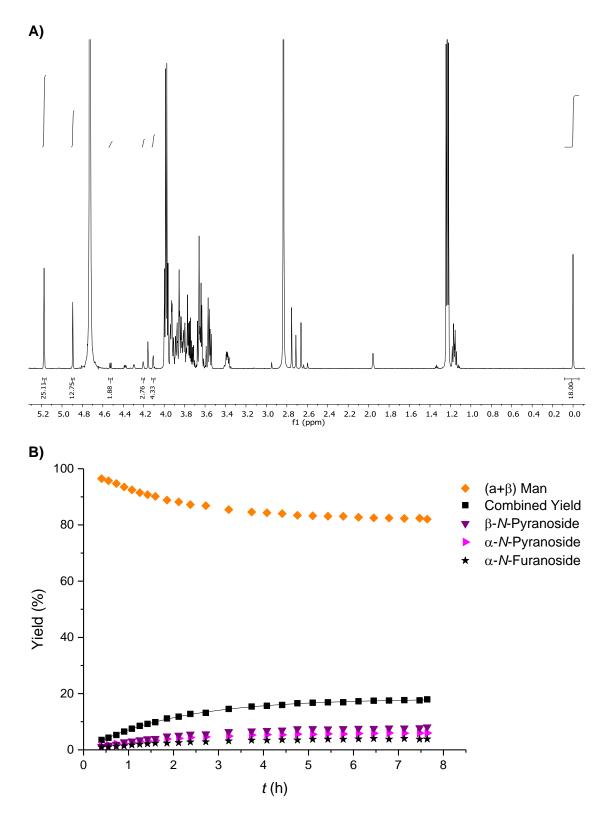


Figure S33. Ligation reaction of 2-deoxyglucose with 1.2 equiv of O-ethyl-*N*-methylhydroxylamine (**20**) at 39 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and product over time.

Reaction of Mannose with O-Ethyl-N-Methylhydroxylamine (20)

Table S14. Characteristic NMR data of products obtained by the reaction of mannose with *O*-ethyl-*N*-methylhydroxylamine (**20**). Determined ${}^{1}J_{C1-H1}$: 158.3 Hz (α -*N*-mannofuranoside), 163.0 Hz (α -*N*-mannopyranoside), 149.3 Hz (β -*N*-mannopyranoside)

	 H HN−OEt		OH HO OH HO OH HO N		X	
Mannose		HO \rightarrow HO \rightarrow HO \rightarrow N OEt α -N-Pyranoside β-N-Pyranoside		HÒH	$h \to h \to h \to h$ HOHO α -N-Furanoside	
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)	
» M Europosido	H-1	4.52	d, 7.1	C-1	97.3	
α - <i>N</i> -Furanoside	H-2	4.39	dd, 7.1, 4.3	C-2	72.1	
	H-3	4.29	dd, 4.3, 2.4	C-3	71.0	
	H-4	4.02-3.97	m	C-4	79.6	
	H-5	3.68-3.62	m	C-5	-	
» A/ Dyroposido	H-1	4.16	d, 2.2	C-1	93.4	
α- <i>N</i> -Pyranoside	H-2	4.21	dd, 3.4, 2.2	C-2	68.0	
	H-3	3.92-3.87	m	C-3	70.5	
	H-4	-	-	C-4	66.4	
	H-5	-	-	C-5	75.1	
	H-1	4.17	d, 0.9	C-1	92.2	
β- <i>N</i> -Pyranoside	H-2	4.11	dd, 2.9, 0.9	C-2	69.1	
	H-3	3.68-3.62	m	C-3	73.5	
	H-4	-	-	C-4	66.3	
	H-5	3.41-3.36	m	C-5	77.8	
	H-6a	3.78-3.70	m	C-6	-	

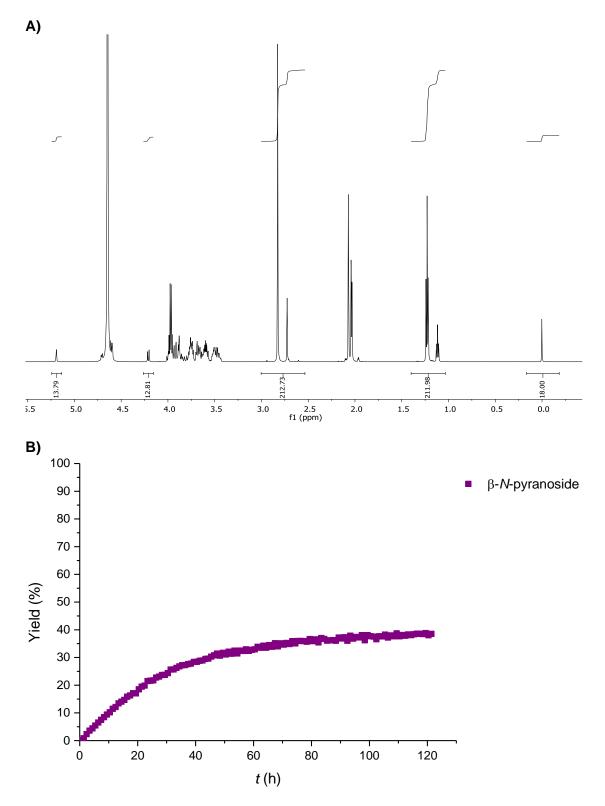
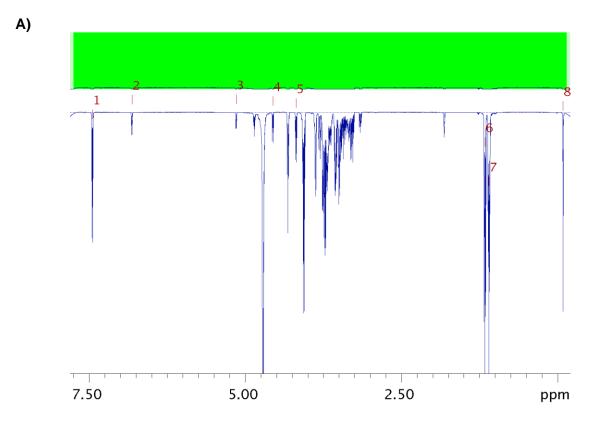


Figure S34. Ligation reaction of mannose with 2.0 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at 39 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yields of starting material and products over time.

Reaction of *N*,*N*'-Diacetylchitobiose with *O*-Ethyl-*N*-Methylhydroxylamine (20)


Table S15. Characteristic NMR data of product obtained by the reaction of N,N'-diacetylchitobiose with O-ethyl-N-methylhydroxylamine (**20**).

		HO HO HO ACHN	HO HO HO A	CHN HO ACHN	N OEt H
	<i>N,N</i> '-Dia	cetylchitobiose		β- <i>N</i> -Pyranosid	e
Product	Proton	δ (H) (ppm)	Multiplicity, ³ J _{H-H} (Hz)	Carbon	δ (C) (ppm)
β- <i>N</i> -	H-1	4.19	d, 9.7	C-1	90.9
Pyranoside	H-2	4.07-3.98	m	C-2	51.3
	H-3	3.71-3.55	m	C-3	73.0
	H-4	3.55-3.42	m	C-4	68.9

Figure S35. Ligation reaction of *N*,*N*'-diacetylchitobiose with 2.0 equiv of *O*-ethyl-*N*-methylhydroxylamine (**20**) at 39 °C and pH 5. A) ¹H NMR spectrum (600 MHz) after equilibration. B) Individual yield of product over time.

Determination of T1 times

B)

Fitted function:	f(t) = lo * [1 - 2*exp (-t/T1)]
Random error estimation of data:	RMS per spectrum (or trace/plane)
Systematic error estimation of data:	worst case per peak scenario
Fit parameter Error estimation method:	from fit using arbitray y uncertainties
Confidence level:	95%
Used peaks:	
Used integrals:	peak intensities
Used Mixing time:	all values (including replicates) used

Peak name	F2 [ppm]	lo	error	T1 [s]	error
1	7.447	1.47e+06	7.523e+04	2.35	0.2206
2	6.814	4.35e+05	1.344e+04	3.19	0.1587
3	5.144	6.39e+05	1.031e+04	2.84	0.07728
4	4.557	2.75e+05	2.858e+04	1.28	0.2853
5	4.185	4.03e+05	3.701e+04	0.947	0.1910
6	1.162	3.48e+07	4.075e+05	2.30	0.04960
7	1.097	1.41e+07	1.948e+05	3.90	0.08061
8	-0.089	1.60e+07	7.490e+04	3.39	0.02500

Figure S36. Determination of T1 times of compounds present during the reaction of glucose with 1.2 equiv of *O*-ethylhydroxylamine (**11**) at 27 °C and pH 6. A) ¹H NMR spectrum (600 MHz) after equilibration B) Calculation of T1 times from the data obtained in Figure A.