CHEMSTRY
 A EUROPEAN JOURNAL

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2012

Preparation of Carbohydrate Arrays by using Diels-Alder Reactions with Inverse-Electron-Demand

Henning S. G. Beckmann, ${ }^{[a]}$ Andrea Niederwieser, ${ }^{[a]}$ Manfred Wiessler, ${ }^{[b]}$ and Valentin Wittmann* ${ }^{[a]}$

chem_201200382_sm_miscellaneous_information.pdf

Contents

General Methods S2
Synthesis of Tetrazines S3
DARinv in Solution S5
Synthesis of Carbohydrate-Dienophile Conjugates S7
Synthesis of Probes for Negative Controls S20
Preparation of the Bifunctional Linker S24
References S27
Spectra S28

General Methods

Technical solvents were destilled prior to use. All dry solvents were purchased from Fluka and SigmaAldrich, except for dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ that was freshly distilled after refuxing over calcium hydride. Reagents were purchased from Acros, Fisher Scientific, Fluka, Glycon, Merck and Sigma-Aldrich and used without further purification.
Analytical thin layer chromatography (TLC) was carried out on TLC Silica gel $60 \mathrm{~F}_{254}$ coated aluminium sheets (Merck) with detection by UV light ($\lambda=254 \mathrm{~nm}$). Additionally, following reagents were used for visualization of spots if applicable: ethanolic sulfuric acid (15 \%); aqueous potassium permanganate ($1 \% \mathrm{w} / \mathrm{v}$); ethanolic ninhydrin solution ($3 \% \mathrm{w} / \mathrm{v}$). After dipping into one of the described solutions, gentle heating was applied.
Preparative flash column chromatography (FC) was performed on silica gel Geduran 60 (40-60 $\mu \mathrm{m}$, Merck) with solvent systems specified.
Analytical reversed-phase high performance liquid chromatography (RP-HPLC) was conducted on a LC-20A prominence system (pumps LC-20AT, auto sampler SIL-20A, column oven CTO-20AC, diode array detector SPD-M20A, controller CBM-20A and software LC-solution) from Shimadsu. A Nucleosil 100-5 C-18 column ($4 \times 250 \mathrm{~mm}$, flow $0.9 \mathrm{~mL} \mathrm{~min}^{-1}$) was used as stationary phase. A gradient of water with 0.1% TFA (eluent A) in MeCN with 0.1% TFA (eluent B) was used as mobile phase.
Nuclear magnetic resonance (NMR) spectra were recorded at room temperature on instruments Avance III 400 and Avance DRX 600 from Bruker. Chemical shifts are reported relative to solvent signals: $\mathrm{CDCl}_{3}: \delta_{H}=7.26 \mathrm{ppm}, \delta_{C}=77.0 \mathrm{ppm} ; \mathrm{DMSO}-\mathrm{d}_{6}: \delta_{H}=2.50 \mathrm{ppm}, \delta_{C}=39.5 \mathrm{ppm} ;$ $\mathrm{CD}_{3} \mathrm{OD}: \delta_{H}=3.31 \mathrm{ppm}, \delta_{C}=49.2 \mathrm{ppm}$. Signals were assigned by first-order analysis and, when feasible, assignments were supported by two-dimentional ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ correlation spectroscopy (COSY, HSQC and HMBC). ${ }^{1} J_{\mathrm{H}-\mathrm{C}}$ coupling constants were obtained from non-decoupled HSQC NMR spectra.
ESI-IT mass spectra were recorded on a Esquire 3000 plus instrument from Bruker. Samples were prepared in MeOH or MeCN (approx. $1 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$).
High-resolution ESI-TOF mass spectra were recorded on a micrOTOF II instrument from Bruker.
Elemental analyses were performed on a vario EL instrument from elementar.

Synthesis of Tetrazines

Figure S1: Synthesis of tetrazine derivatives

4-(6-(Pyrimidin-2-yl)-1,2,4,5-tetrazin-3-yl)benzoic Acid (25)

4-Cyanobenzoic acid (24) (7.0 g, $48 \mathrm{mmol}, 1.0 \mathrm{eq}$) and pyrimidin-2-carbonitrile (23) (5 g, 48 mmol , $1.0 \mathrm{eq})$ were suspended in dry $\mathrm{EtOH}(20 \mathrm{~mL})$ under mechanical stirring and hydrazine monohydrate $(11.5 \mathrm{~mL}, 238 \mathrm{mmol}, 5.0 \mathrm{eq})$ was added dropwise. Subsequently, the mixture was stirred at reflux temperature for 9 h . After cooling to rt, the formed orange precipitate was filtered off and washed with small volumes of EtOH. In order to remove the symmetrical byproduct bis(pyrimidin-2-yl)-1,2,4,5dihydrotetrazine, the solid was stirred in refluxing acetone (30 mL) and filtered off in the heat. This procedure was repeated once. The filtered off orange solid was suspended in acetic acid (115 mL) and oxidized by slow addition of isopentyl nitrite ($4.5 \mathrm{~mL}, 33 \mathrm{mmol}, 1.5 \mathrm{eq}$). After stirring over night, ethyl ether (190 mL) was added in order to precipitate the purple product mixture. After filtration, the crude purple product was recrystallized three times in acetic acid in order to remove the other symmetrical byproduct 4,4'-(1,2,4,5-tetrazine-3,6-diyl)dibenzoic acid. $\mathbf{2 5}^{[1]}$ ($3.0 \mathrm{~g}, 10.7 \mathrm{mmol}, 23 \%$) was isolated as purple solid that still contained small amounts of the tetrazinyldibenzoic acid.

TLC: $R_{f}=0.11\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$
$\mathbf{1}_{\mathbf{H}}$ NMR ($399.8 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta=13.35$ (br. s, $1 \mathrm{H} ; \mathrm{COOH}$), 9.21 (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-4$ " and $\mathrm{H}-6^{\prime \prime}$), $8.71(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-2$ and $\mathrm{H}-6$ or $\mathrm{H}-3$ and $\mathrm{H}-5), 8.25(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-2$ and $\mathrm{H}-6$ or $\mathrm{H}-3$ and H-5), 7.84 (t, J = $\left.4.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5^{\prime \prime}\right) \mathrm{ppm}$
${ }^{13}$ C NMR (100.5 MHz, DMSO- d_{6}): $\delta=166.7(\mathrm{COOH}), 163.2,162.9,159.0$ (each quat. C), 158.5 (C-4" and C-6"), 135.3, 134.5 (each quat. C), 130.2 (C-2 and C-6 or C-3 and C-5), 128.3
(C-2 and C-6 or C-3 and C-5), 127.9 (quat. C), 123.0 (C-5") ppm
ESI-TOF-HRMS (neg. mode): $m / z=279.0645[\mathrm{M}-\mathrm{H}]^{-}\left(\right.$calc. $m / z=279.0645[\mathrm{M}-\mathrm{H}]^{-}$)

2,5-Dioxopyrrolidin-1-yl 6-(6-(pyrimidin-2-yl)-1,2,4,5-tetrazin-3-yl)benzoate (15)

$$
\begin{gathered}
\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{7} \mathrm{O}_{4} \\
377.31 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Tetrazine 25 ($605 \mathrm{mg}, 2.14 \mathrm{mmol}, 1 \mathrm{eq}$) was suspended in DMSO/pyridine ($19: 1,25 \mathrm{~mL}$) and N hydroxysuccinimide ($370 \mathrm{mg}, 3.21 \mathrm{mmol}, 1.5 \mathrm{eq}$) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($500 \mathrm{mg}, 3.22 \mathrm{mmol}, 1.50 \mathrm{eq}$) were added. The mixture was heated to $40^{\circ} \mathrm{C}$ and became clear after a few minutes. After 2 h , the solvent was removed under reduced pressure. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed once with water. The aqueous layer was extracted once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combinded organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was almost completely dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and precipitated by the addition of diethyl ether (approx. 300 mL). The precipitate was collected by filtration and washed with diethyl ether. After removal of residual solvent in vacuo, (15) (689 mg , $1.827 \mathrm{mmol}, 85 \%$) was isolated as a red crystalline solid.

TLC: $R_{f}=0.63\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$
$\mathbf{1}_{\mathbf{H}}$ NMR ($399.8 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) : $\delta=9.22\left(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-4^{\prime \prime}\right.$ and $\mathrm{H}-6$ " $), 8.85(\mathrm{~m}, 2 \mathrm{H}$; $\mathrm{H}-2$ and $\mathrm{H}-6$ or $\mathrm{H}-3$ and $\mathrm{H}-5), 8.43(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-2$ and $\mathrm{H}-6$ or $\mathrm{H}-3$ and $\mathrm{H}-5), 7.86(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{H}-5$ "), 2.94 ($\mathrm{s}, 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}$), ppm
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, $\mathrm{DMSO}_{\mathrm{d}}$): $\delta=170.2\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 162.9,161.3,159.0$ (each quat. C), 158.5 (C-4" and C-6"), 137.7 (quat. C), 131.0 (C-2 and C-6 or C-3 and C-5), 129.0 (C-2 and C-6 or C-3 and C-5), 127.9 (quat. C), $123.1(\mathrm{C}-5$ " $), 25.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right) \mathrm{ppm}$
ESI-TOF-HRMS (pos. mode): $m / z=378.0918[\mathrm{M}+\mathrm{H}]^{+}, 400.0748[\mathrm{M}+\mathrm{Na}]^{+}$(calc. $\mathrm{m} / \mathrm{z}=$ $\left.378.0945[\mathrm{M}+\mathrm{H}]^{+}, 400.0765[\mathrm{M}+\mathrm{Na}]^{+}\right)$

N-Propyl-4-(6-(pyrimidin-2-yl)-1,2,4,5-tetrazin-3-yl)benzamide (2)

2

$$
\begin{gathered}
\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{7} \mathrm{O} \\
321.34 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

To active ester 15 ($230 \mathrm{mg}, 0.610 \mathrm{mmol}, 1 \mathrm{eq}$) in dry DMSO/pyridine ($18: 1,9.5 \mathrm{~mL}$) propylamine ($80 \mu \mathrm{~L}, 0.98 \mathrm{mmol}, 1.6 \mathrm{eq}$) was added in portions over 4 h at $50^{\circ} \mathrm{C}$ and stirring was continued at rt overnight. The solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was evaporated under reduced pressure. After $\mathrm{FC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right), \mathbf{2}(160 \mathrm{mg}, 0.499 \mathrm{mmol}, 81 \%)$ was isolated
as a purple solid.

TLC: $R_{f}=0.49\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 15: 1\right)$
$\mathbf{1}_{\mathbf{H}}$ NMR ($399.8 \mathrm{MHz}, \mathrm{CDCL}_{3}$): $\delta=9.13(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-4$ " and $\mathrm{H}-6$ " $), 8.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H} ; \mathrm{H}-2$ and $\mathrm{H}-6$ or $\mathrm{H}-3$ and $\mathrm{H}-5)$, $8.01(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-2$ and $\mathrm{H}-6$ or $\mathrm{H}-3$ and $\mathrm{H}-5), 7.59$ (t, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5$ '), 6.35 (br. s, $1 \mathrm{H} ; \mathrm{NH}$), 3.48 ('q', $J=\mathrm{Hz}, 2 \mathrm{H} ; \mathrm{NCH}_{2}$), 1.69 (sext., $J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{NCH}_{2} \mathrm{CH}_{2}$), $1.02\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right) \mathrm{ppm}$
${ }^{13}$ C NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.6,164.1,163.3,159.5$ (each quat.), 158.5 (C-4" and $\mathrm{C}-6^{\prime \prime}$), $139.2,133.8$ (each quat.), 129.0 ($\mathrm{C}-2$ and $\mathrm{C}-6$ or $\mathrm{C}-3$ and $\mathrm{C}-5$), 127.9 ($\mathrm{C}-2$ and $\mathrm{C}-6$ or $\mathrm{C}-3$ and C-5), $122.6\left(\mathrm{C}-5\right.$ "), $42.0\left(\mathrm{NCH}_{2}\right), 22.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 11.5\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$
ESI-TOF-HRMS (pos. mode): $m / z=322.1389[\mathrm{M}+\mathrm{H}]^{+}$(calc. $m / z=322.1411[\mathrm{M}+\mathrm{H}]^{+}$)

DARinv in Solution

N -(Propyl)-exo-norborn-5-en-2,3-dicarboximide (1)

$$
\begin{gathered}
\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2} \\
205.25 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

5-Norbornene-exo-2,3-dicarboxylic anhydride ($200 \mathrm{mg}, 1.22 \mathrm{mmol}, 1 \mathrm{eq}$) was added to a solution of n-propylamine ($200 \mu \mathrm{~L}, 144 \mathrm{mg}, 2 \mathrm{eq}$) in dry toluene (4 mL). After 30 min , the mixture was heated to reflux temperature for 4.5 h . After cooling to rt , the mixture was diluted with water and EtOAc . The layers were separated and the organic layer was washed two times with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated in vacuo. After FC (petroleum ether/EtOAc 7:1), $\mathbf{1}^{[2]}(220 \mathrm{mg}, 1.07 \mathrm{mmol}$, 88%) was isolated as a white solid.

TLC: $R_{f}=0.30$ (petroleum ether/EtOAc)
$\mathbf{1}_{\mathbf{H}}$ NMR $\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.27(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-5$ and $\mathrm{H}-6), 3.42\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{NCH}_{2}\right)$, 3.26 ('quin', $J=1.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-1$ and $\mathrm{H}-4$), $2.66(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-2$ and $\mathrm{H}-3$), $1.58(\mathrm{~m}, 2 \mathrm{H}$; $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), $1.50(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-7 \mathrm{a}), 1.23(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-7 \mathrm{~b}), 0.90\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.1\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 137.8(\mathrm{C}-5$ and $\mathrm{C}-6), 47.8(\mathrm{C}-2$ and $\mathrm{C}-3)$, 45.1 (C-1 and C-4), $42.7(\mathrm{C}-7), 40.3\left(\mathrm{NCH}_{2}\right), 21.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 11.4\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$

ESI-IT-MS (pos. mode): $m / z=228.1[\mathrm{M}+\mathrm{Na}]^{+}$(calc. $m / z=228.1[\mathrm{M}+\mathrm{Na}]^{+}$)
CHN analysis (in \%): C 70.17, H 7.31, N 6.70 (calc.: C 70.22, H 7.37, N 6.82)

N-Propyl-1-(4-(propylcarbamoyl)phenyl)-4-pyrimidin-2-yl-pyridazido[4,5-e]norbornan-exo-6,7dicarboximid (4)

$$
\begin{gathered}
\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{3} \\
496.56 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Tetrazine $\mathbf{2}(37 \mathrm{mg}, 0.12 \mathrm{mmol}, 1 \mathrm{eq})$ and dienophile $\mathbf{1}(29 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.3 \mathrm{eq})$ were dissolved in DMSO (2 mL). After 3.5 h , the solvent was removed under reduced pressure. The residue was dissolved in acetic acid (2 mL) and isoamyl nitrite ($15 \mu \mathrm{~L}, 0.12 \mathrm{mmol}, 1 \mathrm{eq}$) was added. After 15 min , the solvent was removed under reduced pressure. After $\mathrm{FC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 25: 1\right), 4(53 \mathrm{mg}$, $0.11 \mathrm{mmol}, 93 \%$) was isolated as a white solid.
${ }^{\mathbf{1}} \mathbf{H}^{\mathbf{N M R}}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.92\left(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-4\right.$ " and $\left.\mathrm{H}-6^{\prime \prime}\right), 7.86-7.82(\mathrm{~m}, 2 \mathrm{H}$; $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$ or $\mathrm{H}-3^{\prime}$ and $\mathrm{H}^{\prime} 5^{\prime}$), $7.80-7.77$ ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$ or $\mathrm{H}-3^{\prime}$ and $\mathrm{H}-5^{\prime}$), 7.36 ($\mathrm{t}, \mathrm{J}=$ $4.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5$ "), $6.96(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH})$, 4.66 (m, $1 \mathrm{H} ; \mathrm{H}-5$ or H-8), 3.95 (m, 1 H ; $\mathrm{H}-5$ or $\mathrm{H}-8$), $3.52-3.47\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{NCH}_{2}\right), 3.47-3.40\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{NHCH}_{2}\right), 3.33(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-6$ or $\mathrm{H}-7)$, 3.15 (m, $1 \mathrm{H} ; \mathrm{H}-6$ or H-7), $1.88-1.81$ (m, $1 \mathrm{H} ; \mathrm{H}-9 a$), 1.67 (sext., J = $7.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{NHCH}_{2} \mathrm{CH}_{2}$), 1.63-1.54 (m, $3 \mathrm{H} ; \mathrm{H}-9 \mathrm{~b}$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), $0.99\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.90(\mathrm{t}, \mathrm{J}=$ $\left.7.4 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$
${ }^{13}$ C NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.6,176.3$ (both $\left.\mathrm{N}(\mathrm{C}=\mathrm{O})_{2}\right)$, $167.2(\mathrm{NC}=\mathrm{O})$, 162.2 (quat. C), 157.6 (C-4" and C-6"), 153.8, 150.5, 147.4, 145.4, 137.7, 136.0 (each quat. C), 128.7, 127.5 ($\mathrm{C}-2^{\prime}$ and $\mathrm{C}-6^{\prime}$), $120.7\left(5^{\prime \prime}\right), 47.1,46.5(\mathrm{C}-6$ and $\mathrm{C}-7), 45.8,44.9$ (C-5 and $\left.\mathrm{C}-8\right), 43.3(\mathrm{C}-9), 41.9$ $\left(\mathrm{NHCH}_{2}\right), 40.8\left(\mathrm{NCH}_{2}\right), \quad 22.7\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), \quad 21.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), \quad 11.4\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 11.3$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$
ESI-TOF-HRMS (pos. mode): $m / z=497.2271[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calc. $\left.m / z=497.2296[\mathrm{M}+\mathrm{H}]^{+}\right)$

Synthesis of Carbohydrate-Dienophile Conjugates

Figure S2: Synthesis of dienophile-spacer conjugate $\mathbf{3 0}$

11-Azido-3,6,9-trioxa-undecan-1-ol (28)

 28

$$
\begin{gathered}
\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4} \\
219.24 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Compound 28 was obtained in two steps from tetra(ethylene glycol) (26) according to a procedure from Shirude et al.: ${ }^{[3]}$ (1) $\mathrm{TsCl}, \mathrm{NaOH}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}(76 \%) ;(2) \mathrm{NaN}, \mathrm{DMF}, 60{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$ (79 \%).

11-Amino-3,6,9-trioxa-undecan-1-ol (29)

$$
\begin{gather*}
\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{NO}_{4} \tag{29}\\
193.24 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gather*}
$$

Compound 29 was obtained from 28 according to a procedure from Svedhem et al.: ${ }^{[4]} \mathrm{PPh}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, $0^{\circ} \mathrm{C}$ - rt, 19 h (96 \%)

N -(3,6,9,12-Tetraoxa-dodecan-1-yl)-exo-norborn-5-en-2,3-dicarboximide (30)

$$
\begin{gathered}
\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{6} \\
339.38 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

To a solution of 5-norbornene-exo-2,3-dicarboxylic anhydride ($3.67 \mathrm{~g}, 22.4 \mathrm{mmol}, 1 \mathrm{eq}$) in dry pyridine (10 mL) amine $29(4.75 \mathrm{~g}, 24.6 \mathrm{mmol}, 1.10 \mathrm{eq})$ dissolved in dry pyridine (15 mL) was added dropwise. Subsequently, the mixture was heated to reflux temperature for 2.5 h . The solvent was evaporated under reduced pressure und the residue was coevaporated three times with toluene. After FC (EtOAc/MeOH 10:1), 30 ($6.88 \mathrm{~g}, 20.3 \mathrm{mmol}, 91 \%$) was isolated as a pale oil.

TLC: $R_{f}=0.31(E t O A c / M e O H 10: 1)$
$\mathbf{1}_{\mathbf{H}}$ NMR $\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.28-6.27(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-5$ and $\mathrm{H}-6), 3.74-3.67(\mathrm{~m}, 4 \mathrm{H} ; 2 \times$ $\left.\mathrm{CH}_{2}\right), 3.67-3.63\left(\mathrm{~m}, 4 \mathrm{H} ; 2 \times \mathrm{CH}_{2}\right), 3.63-3.56\left(\mathrm{~m}, 8 \mathrm{H} ; 4 \times \mathrm{CH}_{2}\right), 3.28-3.24(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-1$ and $\mathrm{H}-4)$, 2.69-2.66 (m, $2 \mathrm{H} ; \mathrm{H}-2$ and H-3), 1.49-1.46 (m, $1 \mathrm{H} ; \mathrm{H}-7 \mathrm{a}), 1.37-1.33(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-7 \mathrm{~b}) \mathrm{ppm}$ ${ }^{13} \mathbf{C}$ NMR $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.0(\mathrm{C}=0), 137.8(\mathrm{C}-5$ and $\mathrm{C}-6), 72.5,70.7,70.5,70.4$, 69.9, 66.9, $61.8\left(\right.$ each $\left.\mathrm{CH}_{2}\right), 47.8(\mathrm{C}-2$ and $\mathrm{C}-3), 45.2(\mathrm{C}-1$ and $\mathrm{C}-4), 42.7(\mathrm{C}-7), 37.7\left(\mathrm{CH}_{2}\right)$ ppm
ESI-IT-MS (pos. mode): $m / z=340.1[\mathrm{M}+\mathrm{H}]^{+}, 362.1[\mathrm{M}+\mathrm{Na}]^{+}, 378.1[\mathrm{M}+\mathrm{K}]^{+}($calc. $m / z=340.2$ $\left.[\mathrm{M}+\mathrm{H}]^{+}, 362.2[\mathrm{M}+\mathrm{Na}]^{+}, 378.1[\mathrm{M}+\mathrm{K}]^{+}\right)$
CHN analysis (in \%): C 59.80, H 7.33, N 3.95 (calc.: C $60.16, \mathrm{H} 7.42, \mathrm{~N} 4.13$)

Figure S3: Synthesis of dienophile-spacer conjugate 32

Pent-4-en-1-yl 4-Methylbenzenesulfonate (31)

$$
31
$$

$$
\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}
$$

$$
240.32 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Compound 31 was obtained from pent-4-en-1-ol according to a procedure from White et al.: ${ }^{[5]} \mathrm{TsCl}$, $E t N_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}(76 \%)$

3,6,9,12-Tetraoxa-heptadec-16-en-1-ol (32)

$$
\begin{gathered}
\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}^{5} \\
262.34 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Tetra(ethylene glycol) (26) ($3.30 \mathrm{~g}, 17.0 \mathrm{mmol}, 5.0 \mathrm{eq}$) was dissolved in dry THF (15 mL) and NaH (60% dispersion in mineral oil, $135 \mathrm{mg}, 3.38 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added at $0^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , the mixture was heated to reflux temperature for 1 h . Tosylate 31 (739 mg , $3.08 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (5 mL) was added and the mixture was heated to reflux temperature for 6 h . Subsequently, the solvent was evaporated under reduced pressure and the residue was dissolved in a mixture of water and EtOAc. The phases were separeted and the aqueous phase was extracted four times with EtOAc. The combined organic phases were washed once with a small volume of brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was evaporated under reduced pressure. After FC (EtOAc to EtOAc/MeOH 20:1), pure 32 ($667 \mathrm{mg}, 2.54 \mathrm{mmol}, 82 \%$) was isolated as pale oil.
TLC: $R_{f}=0.26(E t O A c / M e O H 20: 1)$
$\mathbf{1}_{\mathbf{H}} \mathbf{N M R}\left(399.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.80$ (ddt, $\left.J=16.9,10.2,6.6 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-12\right), 5.01$ (ddt, $J=$ 17.1, 2.0, 1.6 Hz $1 \mathrm{H} ; \mathrm{H}-13 \mathrm{a}$), 4.94 (ddt, $J=10.2,2.1,1.3 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-13 \mathrm{~b})$, $3.74-3.69$ (m, 2 H ; CH_{2}), 3.69-3.55 (m, $\left.14 \mathrm{H} ; 7 \times \mathrm{CH}_{2}\right), 3.46(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H} ; 2 \times \mathrm{H}-9), 2.13-2.06(\mathrm{~m}, 2 \mathrm{H} ; 2 \times$ $\mathrm{H}-11$), $1.71-1.63(\mathrm{~m}, 2 \mathrm{H} ; 2 \times \mathrm{H}-8) \mathrm{ppm}$
${ }^{13}$ C NMR ($\left.100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.3(\mathrm{C}-12), 114.7(\mathrm{C}-13), 72.5\left(\mathrm{CH}_{2}\right), 70.7(\mathrm{C}-9), 70.6$, 70.6, 70.6, 70.6, 70.3, 70.1, 61.7 (each CH_{2}), 30.2 (C-11), 28.73 (C-10) ppm

ESI-TOF-HRMS (pos. mode): $m / z=285.1673[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calc. $\left.m / z=285.1673[\mathrm{M}+\mathrm{Na}]^{+}\right)$

CHCl_{3}, reflux, $\mathrm{CuCl}_{2}, 57$ \%

$\mathrm{CuCl}_{2}, \mathrm{CHCl}_{3}$, reflux, 50 \%

$$
\begin{aligned}
& \mathrm{R}=\mathrm{Ac} 39 \\
& \mathrm{R}=\mathrm{H} \\
& \hline
\end{aligned} \quad \begin{aligned}
&
\end{aligned} \square \begin{aligned}
& \mathrm{NaOMe}, \\
& \mathrm{MeOH}
\end{aligned}
$$

40

Figure S4: Synthesis of carbohydrate dienophile conjugates

2-Methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy- α-D-glucopyrano)-[2,1-d]-2-oxazoline (34)

34

$$
\begin{gathered}
\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{8} \\
329.30 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Oxazoline 34 was obtained in two steps from glucosamine hydrochloride according to published procedures: (1) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, $4 \mathrm{~d}(70 \%)^{[6]}$; (2) TMS-OTf, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 50^{\circ} \mathrm{C}, 20 \mathrm{~h}(80 \%) .{ }^{[6]}$

N-(12-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl)-3,6,9,12-tetraoxa-dodecan-1-yl)-exo-norborn-5-en-2,3-dicarboximide (35)

Oxazoline 34 ($803 \mathrm{mg}, 2.34 \mathrm{mmol}, 2.0 \mathrm{eq}$) was coevaporated twice with toluene. Anhydrous $\mathrm{CuCl}_{2}{ }^{[7]}$ ($328 \mathrm{mg}, 2.44 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added and the mixture was coevaporeted with toluene again. Dienophile-spacer conjugate 30 ($414 \mathrm{mg}, 1.22 \mathrm{mmol}, 1.0 \mathrm{eq}$) was coevaporated twice with toluene, dissolved in dry $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and added to the oxazoline. The mixture was heated to reflux temperature for 5.5 h . After cooling to rt, the solvent was removed under reduced pressure, EtOAc was added, and the mixture was washed twice with 1 N HCl , once with sat. NaHCO_{3} and once with brine. The respective aqueous phases were extracted once with EtOAc and the organic layers were combined before performing the subsequent washing step. Finally, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was evaporated under reduced pressure. After $\mathrm{FC}(\mathrm{EtOAc} / \mathrm{MeOH}$ $30: 1$ to $15: 1$), 35 ($466 \mathrm{mg}, 0.697 \mathrm{mmol}, 57 \%$) was isolated as pale yellow oil. In addition, a fraction of impure 35 (182 mg) was isolated.

TLC: $R_{f}=0.12(E t O A c / M e O H ~ 30: 1)$
RP-HPLC ($30-90 \% \mathrm{~B}$ in 20 min): $t_{R}=11.11 \mathrm{~min}$
$\mathbf{1}_{\mathbf{H}}$ NMR (399.8 MHz, CDCl $)_{3}$): $\delta=6.59(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 6.26-6.23\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-5^{\prime \prime}\right.$ and $\left.\mathrm{H}-6^{\prime \prime}\right)$, $5.09-4.98(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-3$ and H-4), $4.76(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1), 4.24$ (dd, J = 12.3, 4.7 Hz, 1 H; H-6a), 4.11-3.97 (m, $2 \mathrm{H} ; \mathrm{H}-2, \mathrm{H}-6 \mathrm{a}$), 3.88-3.73 (m, $2 \mathrm{H} ; \mathrm{CH}_{2}$), 3.71-3.48 (m)15H-5 and $7 \times \mathrm{CH}_{2}, 3.25-3.18\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-1^{\prime \prime}\right.$ and $\left.\mathrm{H}-4^{\prime \prime}\right)$, $2.67-2.62\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-2^{\prime \prime}\right.$ and $\left.\mathrm{H}-3^{\prime \prime}\right), 2.06$ (s , $\left.3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.99-1.97\left(\mathrm{~m}, 6 \mathrm{H} ; 2 \times \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $1.94\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, 1.49-1.44 (m, 1 H ; H-7a"), 1.35-1.30 (m, $\left.1 \mathrm{H} ; \mathrm{H}-7 \mathrm{~b}^{\prime \prime}\right) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=177.9\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 170.7,170.7,170.5,169.3$ (each $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 137.8\left(\mathrm{C}-5^{\prime \prime}\right.$ and $\left.\mathrm{C}-6^{\prime \prime}\right)$, $101.8(\mathrm{C}-1), 73.4(3$ or 4$), 71.6\left(\mathrm{CH}_{2}\right), 71.5(\mathrm{C}-5), 70.8$, 70.5, 70.3, $70.0\left(\right.$ each $\left.\mathrm{CH}_{2}\right), 68.6(\mathrm{C}-3$ or $\mathrm{C}-4)$, $68.6\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 62.2(\mathrm{C}-6), 53.9(\mathrm{C}-2)$,
47.8 (C-2" and C-3"), $45.2\left(\mathrm{C}-1\right.$ " and C-4"), $42.6(\mathrm{C}-7$ " $), 37.7\left(\mathrm{CH}_{2}\right), 22.9,20.7,20.6,20.6$ (each $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) \mathrm{ppm}$
ESI-TOF-HRMS (pos. mode): $m / z=669.2860[M+H]^{+}, 691.2682[\mathrm{M}+\mathrm{Na}]^{+}$(calc. $\mathrm{m} / \mathrm{z}=$ $\left.669.2865[\mathrm{M}+\mathrm{H}]^{+}, 691.2685[\mathrm{M}+\mathrm{Na}]^{+}\right)$

N-(12-(2-Acetamido-2-deoxy- β-D-glucopyranosyl)-3,6,9,12-tetraoxa-dodecan-1-yl)-exo-norborn-5-en-2,3-dicarboximide (5)

Peracetylated compound 35 ($202 \mathrm{mg}, 0.302 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dry $\mathrm{MeOH}(3 \mathrm{~mL})$ and a 0.5 M solution of NaOMe in $\mathrm{MeOH}(72 \mu \mathrm{~L}, 36 \mu \mathrm{~mol}, 0.12 \mathrm{eq})$ was added. After stirring at rt for 2 h , the mixture was neutralized by addition of acidic ion-exchange resin (Dowex 50W-X8, H^{+}form) and filtrated. After removal of the solvent under reduced pressure, 5 ($157 \mathrm{mg}, 0.289 \mathrm{mmol}, 96 \%$) was isolated as a colorless oil.

TLC: $R_{f}=0.13\left(\mathrm{CDCl}_{3} / \mathrm{MeOH} 10: 1\right)$
RP-HPLC (5-60 \% B in 20 min$): t_{R}=15.39 \mathrm{~min}$
$\mathbf{1}_{\mathbf{H}}$ NMR (399.8 MHz, $\left.\mathrm{D}_{3} \mathrm{COD}\right): \delta=6.33$ ('t', J = $1.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-5^{\prime \prime}$ and $\mathrm{H}-6$ '"), $4.49(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1$), 3.93 (ddd, $J=11.3,4.9,3.6 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-1 \mathrm{a}$), 3.87 (dd, J=11.9, 2.2 Hz, 1 H ; H-6a), 3.74-3.54 (m, $17 \mathrm{H} ; \mathrm{H}-2, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-1 \mathrm{~b}^{\prime}$ and $7 \times \mathrm{CH}_{2}$), $3.45(\mathrm{dd}, \mathrm{J}=10.3,8.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3)$, 3.32 (dd, J = 9.7, $8.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4$), 3.27 (ddd, J = 9.6, 5.5, 2.2 Hz $1 \mathrm{H} ; \mathrm{H}-5$), $3.20-3.17$ (m, 2 H ; $\mathrm{H}-1^{\prime \prime}$ and $\left.\mathrm{H}-4^{\prime \prime}\right), 2.72\left(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-2^{\prime \prime}\right.$ and $\mathrm{H}-3 \prime$), $1.99\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.48-1.44(\mathrm{~m}$, $1 \mathrm{H} ; \mathrm{H}-7 \mathrm{a} ")$, 1.40-1.36 (m, $1 \mathrm{H} ; \mathrm{H}-7 \mathrm{~b}$ ") ppm
${ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{D}_{3} \mathrm{COD}\right): \delta=180.2\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 173.9\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 139.1(\mathrm{C}-5$ " and C-6"), $102.9(\mathrm{C}-1), 78.1(\mathrm{C}-5), 76.4(\mathrm{C}-3), 72.3(\mathrm{C}-4), 71.8,71.7,71.7,71.6,71.1\left(\right.$ each $\left.\mathrm{CH}_{3}\right)$, $70.0\left(\mathrm{C}-1\right.$ '), $68.0\left(\mathrm{CH}_{2}\right), 63.0(\mathrm{C}-6), 57.5(\mathrm{C}-2), 49.1\left(\mathrm{C}-2^{\prime \prime}\right.$ and $\left.\mathrm{C}-3^{\prime \prime}\right), 46.6\left(\mathrm{C}-1^{\prime \prime}\right.$ and $\mathrm{C}-4$ "), 43.7 (C-7"), $39.1\left(\mathrm{C}-8{ }^{\prime}\right)$, $23.2\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) \mathrm{ppm}$

ESI-TOF-HRMS (pos. mode): $m / z=543.2539[\mathrm{M}+\mathrm{H}]^{+}, 565.2364[\mathrm{M}+\mathrm{Na}]^{+}$(calc. $\mathrm{m} / \mathrm{z}=$ $\left.543.2554[\mathrm{M}+\mathrm{H}]^{+}, 565.2373[\mathrm{M}+\mathrm{Na}]^{+}\right)$

3,6,9,12-Tetraoxaheptadec-16-en-1-yl 2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-Dglucopyranoside (36)

$$
\begin{gather*}
\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{NO}_{13} \tag{36}\\
691.65 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gather*}
$$

Oxazoline 34 ($833 \mathrm{mg}, 2.53 \mathrm{mmol}, 2.0 \mathrm{eq}$) was coevaporated twice with toluene. Anhydrous $\mathrm{CuCl}_{2}{ }^{[7]}$ ($340 \mathrm{mg}, 2.53 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added and the mixture was coevaporeted with toluene again. Dienophile-spacer conjugate 32 ($332 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.0 \mathrm{eq}$) was coevaporated twice with toluene, dissolved in dry $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and added to the oxazoline. The mixture was heated to reflux temperature for 10.5 h . After cooling to rt, the solvent was removed under reduced pressure, EtOAc was added, and the mixture was washed once with 0.1 N HCl , once with sat. NaHCO_{3} and once with brine. The respective aqueous layers were once extracted with EtOAc and the organic layers were combined before performing the subsequent washing step. Finally, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was evaporated under reduced pressure. After $\mathrm{FC}(\mathrm{EtOAc} / \mathrm{MeOH}$ $30: 1$ to $25: 1$), 36 ($378 \mathrm{mg}, 0.639 \mathrm{mmol}, 50 \%$) was isolated as pale yellow oil. In addition, a fraction of impure $\mathbf{3 6}(193 \mathrm{mg})$ was isolated.

TLC: $R_{f}=0.26\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} 10: 1\right)$
RP-HPLC (30-90 \% B in 20 min): $t_{R}=13.17 \mathrm{~min}$
$\mathbf{1}_{\mathbf{H}}$ NMR ($399.8 \mathrm{MHz}, \mathrm{CDC}_{3}$): $\delta=6.72(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 5.75 (ddt, $J=17.0,10.2$, $6.6 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-12$ '), 5.07-4.98 (m, $2 \mathrm{H} ; \mathrm{H}-3$ and $\mathrm{H}-4$), 4.96 (ddt, $\left.J=17.1,2.0,1.6 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-13 \mathrm{a}^{\prime}\right)$, 4.90 (ddt, $\left.J=10.2,2.0,1.3 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-13 \mathrm{~b}^{\prime}\right), 4.74(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1), 4.20(\mathrm{dd}, J=12.2$, $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{a}$), 4.06 (dd, J = 12.3, 2.5 Hz, $1 \mathrm{H} ; \mathrm{H}-6 \mathrm{~b}), 4.07-3.99$ (m, $1 \mathrm{H} ; \mathrm{H}-2$), 3.87-3.48 (m, $17 \mathrm{H} ; \mathrm{H}-5$ and $8 \times \mathrm{CH}_{2}$), $3.41\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H} ; 2 \times \mathrm{H}-9{ }^{\prime}\right), 2.09-2.01\left(\mathrm{~m}, 2 \mathrm{H} ; 2 \times \mathrm{H}-11^{\prime}\right), 2.02$ (s, $\left.3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $1.91\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, 1.62 (m, $\left.2 \mathrm{H} ; 2 \times \mathrm{H}-10^{\prime}\right)$, ppm
${ }^{13}$ C NMR ($\left.100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.6,170.6,170.5,169.2\left(\right.$ each $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $138.1\left(\mathrm{C}-12^{\prime}\right)$, $114.6\left(\mathrm{C}-12\right.$ '), $101.8(\mathrm{C}-1), 73.3(\mathrm{C}-3$ or $\mathrm{C}-4), 71.5\left(\mathrm{CH}_{2}\right), 71.4(\mathrm{C}-5), 70.5,70.5,70.4,70.4$, 70.2, 70.2, $69.9\left(\mathrm{C}-9\right.$ ' and $\left.8 \times \mathrm{CH}_{2}\right)$, $68.6(\mathrm{C}-3$ or $\mathrm{C}-4), 68.6\left(\mathrm{CH}_{2}\right), 62.1(\mathrm{C}-6), 53.7(\mathrm{C}-2), 30.1$ (C-11'), 28.6 (C-10'), 22.8, 20.6, 20.6, 20.5 (each $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$) ppm
ESI-TOF-HRMS (pos. mode): $m / z=592.2956[\mathrm{M}+\mathrm{H}]^{+}, 614.2766[\mathrm{M}+\mathrm{Na}]^{+}$(calc. $\mathrm{m} / \mathrm{z}=$ $\left.592.2964[\mathrm{M}+\mathrm{H}]^{+}, 614.2783[\mathrm{M}+\mathrm{Na}]^{+}\right)$

3,6,9,12-Tetraoxaheptadec-16-en-1-yl 2-Acetamido-2-deoxy- β-D-glucopyranoside (6)

6

$$
\begin{gathered}
\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{NO}_{10} \\
465.26 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Peracetylated compound 36 ($295 \mathrm{mg}, 0.499 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dry $\mathrm{MeOH}(4 \mathrm{~mL})$ and a 0.5 M solution of NaOMe in $\mathrm{MeOH}(180 \mu \mathrm{~L}, 89.7 \mu \mathrm{~mol}, 0.18 \mathrm{eq})$ was added. After stirring at rt for 2 h , the mixture was neutralized by addition of acidic ion-exchange resin (Dowex $50 \mathrm{~W}-\mathrm{X} 8, \mathrm{H}^{+}$form) and filtrated. After removal of the solvent under reduced pressure, $\mathbf{6}$ ($224 \mathrm{mg}, 0.481 \mathrm{mmol}, 97 \%$) was isolated as a colorless oil.

TLC: $R_{f}=0.10\left(\mathrm{CDCl}_{3} / \mathrm{MeOH} 10: 1\right)$
RP-HPLC (5-60 \% B in 20 min$): t_{R}=16.75 \mathrm{~min}$
$\mathbf{1}_{\mathbf{H}}$ NMR ($399.8 \mathrm{MHz}, \mathrm{D}_{3} \mathrm{COD}$): $\delta=5.83$ (ddt, $J=17.1,10.3,6.7 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-12^{\prime}$), 5.04 (ddt, $\left.J=17.1,2.1,1.6 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-13 \mathrm{a}^{\prime}\right), 5.02$ (ddt, $\left.J=10.2,2.2,1.2 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-13 \mathrm{~b}^{\prime}\right), 4.49(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1$), 3.94 (ddd, $J=11.3,4.9,3.6 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-1 \mathrm{a}$), 3.88 (dd, J = 11.9, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$; $\mathrm{H}-6 \mathrm{a}), 3.74\left(\mathrm{~m}, 17 \mathrm{H} ; \mathrm{H}-2, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-1 \mathrm{~b}^{\prime}\right.$ and $\left.7 \times \mathrm{CH}_{2}\right), 3.48\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-9^{\prime}\right), 3.45(\mathrm{dd}$, $J=10.3,8.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3), 3.32(\mathrm{dd}, J=9.7,8.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4), 3.27$ (ddd, $J=9.7,5.5,2.3 \mathrm{~Hz}$ $1 \mathrm{H} ; \mathrm{H}-5), 2.15-2.08\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-11^{\prime}\right), 1.99\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.70-1.61\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-10^{\prime}\right) \mathrm{ppm}$ ${ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{D}_{3} \mathrm{COD}\right): \delta=173.9\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $139.6\left(\mathrm{C}-12{ }^{\prime}\right), 115.4\left(\mathrm{C}-13^{\prime}\right), 103.0$ (C-1), $78.1(\mathrm{C}-5), 76.3(\mathrm{C}-3), 72.3(\mathrm{C}-4), 71.7(\mathrm{C}-9 \prime), 3 \times 71.7,3 \times 71.6$ and $71.3\left(\right.$ each $\left.\mathrm{CH}_{2}\right)$, 70.0 ($\mathrm{C}-1^{\prime}$), $62.9(\mathrm{C}-6), 57.5(\mathrm{C}-2), 31.4\left(\mathrm{C}-11^{\prime}\right), 30.1\left(\mathrm{C}-10^{\prime}\right), 23.2\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) \mathrm{ppm}$

ESI-TOF-HRMS (pos. mode): $m / z=466.2634[\mathrm{M}+\mathrm{H}]^{+}, 488.2454[\mathrm{M}+\mathrm{Na}]^{+}$(calc. $m / z=$ $\left.466.2652[\mathrm{M}+\mathrm{H}]^{+}, 488.2472[\mathrm{M}+\mathrm{Na}]^{+}\right)$

O-(2,3,4,6-Tetra-O-acetyl- α-D-mannopyranosyl)trichloroacetimidate (37)

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{NO}_{10} \\
& 492.69 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

Mannosyl donor $37^{[8]}$ was obtained in three steps from D-mannose: 1) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; 2) $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, $\mathrm{AcOH} ; 3) \mathrm{NC}-\mathrm{CCl}_{3}, \mathrm{NaH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 60 \%$ over three steps.

N -(12-(2,3,4,6-Tetra-O-acetyl- α-D-mannopyranosyl)-3,6,9,12-tetraoxa-dodecan-1-yl)-exo-norborn-5-en-2,3-dicarboximide (38)

38

$$
\begin{gathered}
\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{NO}_{15} \\
669.67 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Dienophile-spacer conjugate $30(500 \mathrm{mg}, 1.47 \mathrm{mmol}, 1.0 \mathrm{eq})$ and mannosyl donor 37 (1.16 g , $2.36 \mathrm{mmol}, 1.6 \mathrm{eq})$ were dissolved at $0^{\circ} \mathrm{C}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$. After addition of BF_{3}. $\mathrm{OEt}_{2}(111 \mu \mathrm{~L}$, $0.884 \mathrm{mmol}, 0.6 \mathrm{eq}$), the mixtrure was stirred for 45 min at $0^{\circ} \mathrm{C}$ and subsequently for 30 min at rt. After neutralization with $\mathrm{Et}_{3} \mathrm{~N}$, water was added to the reaction mixture. The phases were separated and the aqueous phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was evaporated under reduced pressure. After FC (toluene/acetone $4: 1$ to $3: 1$), pure $38(398 \mathrm{mg}, 0.594 \mathrm{mmol}, 40 \%)$ was isolated as pale oil. In addition, a fraction of
impure 38 (351 mg) was isolated.

TLC: $R_{f}=0.31$ (toluene/acetone 4:1)
$\mathbf{1}_{\mathbf{H}}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.28-6.25(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-5$ "and $\mathrm{H}-6$ " $)$, 5.33 ($\mathrm{dd}, \mathrm{J}=10.0,3.5 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{H}-3$), 5.26 ('t', $J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4$), 5.24 (dd, $J=3.5,1.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2$), $4.85(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1), 4.27$ (dd, $J=12.2,4.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{a}), 4.07$ (dd, $J=12.2,2.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{~b})$, 4.04 (ddd, J = 9.9, 4.9, $2.4 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-5$), $3.82-3.78\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-1 \mathrm{a}^{\prime}\right)$, $3.70-3.54$ (m, $15 \mathrm{H} ; \mathrm{H}-1 \mathrm{~b}{ }^{\prime}$ and $7 \times \mathrm{CH}_{2}$), $3.25-3.23\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-\mathrm{l}^{\prime \prime}\right.$ and $\left.\mathrm{H}-4^{\prime \prime}\right)$, $2.66-2.64\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-2^{\prime \prime}\right.$ and $\left.\mathrm{H}-3^{\prime \prime}\right), 2.13(\mathrm{~s}, 3 \mathrm{H}$; $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.02\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.47-1.46$ (m, $1 \mathrm{H} ; \mathrm{H}-7 \mathrm{a}$ "), $1.36-1.33$ (m, $\left.1 \mathrm{H} ; \mathrm{H}-7 \mathrm{~b}^{\prime \prime}\right) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=177.9\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 170.6,169.9,169.8,169.7$ (each $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), \quad 137.8(\mathrm{C}-5$ and $\mathrm{C}-6), \quad 97.7(\mathrm{C}-1), 70.6,70.6,70.5,69.9,69.8\left(\right.$ each $\left.\mathrm{CH}_{2}\right), \quad 69.5$ (C-2), $69.0(\mathrm{C}-3), 68.3(\mathrm{C}-5), 67.3\left(\mathrm{C}-1\right.$ '), $66.8\left(\mathrm{CH}_{2}\right), 66.1(\mathrm{C}-4), 62.4(\mathrm{C}-6), 47.8\left(\mathrm{C}-2^{\prime \prime}\right.$ and C-3"), 45.2 ($\mathrm{C}-1^{\prime \prime}$ and $\mathrm{C}-4^{\prime \prime}$), 42.7 (C-7"), 37.7 (C-8'), 20.8, 20.7, 20.7, 20.6 (each C(O) CCH Cl_{3}) ppm
Coupling H-1/C-1 $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \int_{\mathrm{H}-1, \mathrm{C}-1}=172.3 \mathrm{~Hz}$
ESI-IT-MS (pos. mode): $m / z=692.1[\mathrm{M}+\mathrm{Na}]^{+}, 708.1[\mathrm{M}+\mathrm{K}]^{+}\left(\right.$calc. $m / z=692.3[\mathrm{M}+\mathrm{Na}]^{+}$, $708.2[\mathrm{M}+\mathrm{K}]^{+}$)
CHN analysis (in \%): C 55.56, H 6.46, N 2.07 (calc.: C 55.60, H 6.47, N 2.09)

N -(12- α-D-mannopyranosyl-3,6,9,12-tetraoxa-dodecan-1-yl)-exo-norborn-5-en-2,3dicarboximide (8)

Peracetylated compound 38 ($272 \mathrm{mg}, 0.406 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dry $\mathrm{MeOH}(4 \mathrm{~mL})$ and a 0.5 M solution of NaOMe in $\mathrm{MeOH}(65 \mu \mathrm{~L}, 33 \mu \mathrm{~mol}, 0.08 \mathrm{eq})$ was added. After stirring at rt for 2 h , the mixture was neutralized by addition of acidic ion-exchange resin (Dowex $50 \mathrm{~W}-\mathrm{X} 8, \mathrm{H}^{+}$form) and filtrated. After removal of the solvent under reduced pressure, 8 ($200 \mathrm{~g}, 0.399 \mathrm{mmol}, 98 \%$) was isolated as a colorless oil.

TLC: $R_{f}=0.29\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 5: 1\right)$
$\mathbf{1}_{\mathbf{H}}$ NMR ($600.1 \mathrm{MHz}, \mathrm{D}_{3} \mathrm{COD}$): $\delta=6.33$ ('t', $J=1.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-5$ " and $\mathrm{H}-6$ "), $4.80(\mathrm{~d}, \mathrm{~J}=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1$), $3.85-3.81$ ($\mathrm{m}, 3 \mathrm{H} ; \mathrm{H}-2, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-1 \mathrm{a}^{\prime}$), $3.73-3.55$ ($\mathrm{m}, 19 \mathrm{H} ; \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$, $\mathrm{H}-6 \mathrm{~b}, \mathrm{H}-1 \mathrm{~b}$ ', and $7 \times \mathrm{CH}_{2}$), 3.18 ('quin', $2 \mathrm{H} ; \mathrm{H}-1^{\prime \prime}$ and $\mathrm{H}-4$ ") $1.7,2.71$ ($\mathrm{d}, 2 \mathrm{H} ; \mathrm{H}-2^{\prime \prime}$ and $\mathrm{H}-3$ ') 1.3 , $1.48-1.45$ (m, $\left.1 \mathrm{H} ; \mathrm{H}-7 \mathrm{a}{ }^{\prime \prime}\right)$, 1.41-1.38 (m, $\left.1 \mathrm{H} ; \mathrm{H}-7 \mathrm{~b}^{\prime \prime}\right) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR $\left(150.9 \mathrm{MHz}, \mathrm{D}_{3} \mathrm{COD}\right): \delta=180.2\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 139.0\left(\mathrm{C}-5^{\prime \prime}\right.$ and $\mathrm{C}-6$ " $)$, $101.9(\mathrm{C}-1)$, 74.7 (C-4), $72.7(\mathrm{C}-3), 72.2(\mathrm{C}-2), 71.7,71.7,71.7,71.5,71.1$ (each CH_{2}), 68.7 (C-5), 68.0 $\left(\mathrm{CH}_{2}\right), 67.9\left(\mathrm{C}-1^{\prime}\right), 63.1(\mathrm{C}-6), 49.2\left(\mathrm{C}-2^{\prime \prime}\right.$ and $\left.\mathrm{C}-3^{\prime \prime}\right), 46.6\left(\mathrm{C}-1^{\prime \prime}\right.$ and $\left.\mathrm{C}-4{ }^{\prime \prime}\right), 43.6\left(\mathrm{C}-7^{\prime \prime}\right), 39.1$ (C-8') ppm
Coupling H-1/C-1 ($\left.\mathrm{D}_{3} \mathrm{COD}\right):{ }^{1} \mathrm{~J}_{\mathrm{H}-1, \mathrm{C}-1}=169.4 \mathrm{~Hz}$
ESI-IT-MS (pos. mode): $m / z=524.0[\mathrm{M}+\mathrm{Na}]^{+}, 540.0[\mathrm{M}+\mathrm{K}]^{+}$(calc. $m / z=524.2[\mathrm{M}+\mathrm{Na}]^{+}$, $540.2[\mathrm{M}+\mathrm{K}]^{+}$)
CHN analysis (in \%): C 54.93, H 7.04, N 2.79 (calc.: C 55.08, H 7.03, N 2.79)

3,6,9,12-Tetraoxaheptadec-16-en-1-yl 2,3,4,6-Tetra-O-acetyl- α-D-mannopyranoside (39)

39

$$
\begin{gathered}
\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{14} \\
592.63 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Dienophile-spacer conjugate 32 ($100 \mathrm{mg}, 0.381 \mathrm{mmol}, 1.0 \mathrm{eq}$) and mannosyl donor 37 (319 mg , $0.648 \mathrm{mmol}, 1.7 \mathrm{eq})$ were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ $(22 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 0.45 \mathrm{eq})$ the mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$. After neutralization with $\mathrm{Et}_{3} \mathrm{~N}$, water was added to the reaction mixture. The phases were separated and the aqueous phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was evaporated under reduced pressure. After FC (petroleum ether/EtOAc 1:1 to 1:2), 39 ($150 \mathrm{mg}, 0.253 \mathrm{mmol}, 66 \%$) was isolated as pale oil.

TLC: $R_{f}=0.21$ (petroleum ether/EtOAc)
RP-HPLC ($30-90 \% \mathrm{~B}$ in 20 min): $t_{R}=16.81 \mathrm{~min}$
$\mathbf{1}_{\mathbf{H}}$ NMR ($399.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=5.76$ (ddt, $\left.J=16.9,10.1,6.6 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-12^{\prime}\right), 5.31(\mathrm{dd}, J=$ $10.1,3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3$), 5.24 ('t', $J=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4), 5.22(\mathrm{dd}, J=3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2)$, 5.00-4.93 (m, $\left.1 \mathrm{H} ; \mathrm{H}-13 \mathrm{a}^{\prime}\right)$, 4.93-4.88 (m, $\left.1 \mathrm{H} ; \mathrm{H}-13 \mathrm{~b}^{\prime}\right), 4.82(\mathrm{~d}, \mathrm{~J}=\mathrm{H}-1 \mathrm{~Hz}, 1 \mathrm{H} ; 1.7), 4.25(\mathrm{dd}$, $J=12.3,5.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{a}), 4.08-3.98(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-5, \mathrm{H}-6 \mathrm{~b}), 3.81-3.72\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-1 \mathrm{a}^{\prime}\right), 3.67-3.56$ ($\mathrm{m}, 13 \mathrm{H} ; \mathrm{H}-1 \mathrm{~b}^{\prime}$ and $6 \times \mathrm{CH}_{2}$), $3.56-3.51\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.42\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H} ; 2 \times \mathrm{H}-\mathrm{g}^{\prime}\right), 2.11$ ($\left.\mathrm{s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.10-2.02\left(\mathrm{~m}, 5 \mathrm{H} ; 2 \times \mathrm{H}-11^{\prime}\right.$ and $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.99\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.94$ ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$), 1.63 ('q', $2 \mathrm{H} ; 2 \times \mathrm{H}-11$ ') ppm
${ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.5,169.9,169.7,169.6$ (each $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $138.2(\mathrm{C}-12$ '), 114.6 (C-13'), 97.6 (C-1), 70.6 (C-9'), 70.5, 70.5, 70.5, 70.5, 70.5, 70.0, 69.9 (each CH2), 69.4 (C-2), 69.0 (C-3), 68.3 (C-5), $67.2(\mathrm{C}-1$ '), $66.0(\mathrm{C}-4), 62.3(\mathrm{C}-6), 30.1$ (C-11'), 28.7 (C-10'), 20.8, 20.6, 20.6, 20.5 (each $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$) ppm

ESI-TOF-HRMS (pos. mode): $m / z=615.2623[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calc. $m / z=615.2623[\mathrm{M}+\mathrm{Na}]^{+}$)

3,6,9,12-Tetraoxaheptadec-16-en-1-yl α-D-Mannopyranoside (9)

9

$$
\begin{gathered}
\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{10} \\
424.48 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Peracetylated compound 39 ($109 \mathrm{mg}, 0.184 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dry $\mathrm{MeOH}(3 \mathrm{~mL})$ and a 0.5 M solution of NaOMe in $\mathrm{MeOH}(74 \mu \mathrm{~L}, 36.7 \mu \mathrm{~mol}, 0.2 \mathrm{eq})$ was added. After stirring at rt for 2.5 h , the mixture was neutralized by addition of acidic ion-exchange resin (Dowex 50W-X8, H^{+}form) and filtrated. After removal of the solvent under reduced pressure, 9 ($78 \mathrm{mg}, 0.184 \mathrm{mmol}$, quant.) was isolated as a colorless oil.
$\mathbf{1}_{\mathbf{H}}$ NMR (399.8 MHz, D $\left.{ }_{3} \mathrm{COD}\right): \delta=5.83\left(\mathrm{ddt}, J=17.0,10.2,6.8 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-12{ }^{\prime}\right), 5.02(\mathrm{ddt}, \mathrm{J}=$ $\left.17.1,2.1,1.6 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-13 a^{\prime}\right)$, 4.95 (ddt, $\left.J=10.2,2.1,1.2 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-13 \mathrm{~b}^{\prime}\right), 4.80(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{H}-1)$, 3.89-3.78 (m, $\left.3 \mathrm{H} ; \mathrm{H}-2, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-1 \mathrm{a}^{\prime}\right)$, 3.74-3.53 (m, $19 \mathrm{H} ; \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-1 \mathrm{a}^{\prime}$ and $7 \times \mathrm{CH}_{2}$), $3.48\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H} ; 2 \times \mathrm{H}-9{ }^{\prime}\right), 2.16-2.09\left(\mathrm{~m}, 2 \mathrm{H} ; 2 \times \mathrm{H}-11^{\prime}\right), 1.71-1.61(\mathrm{~m}$, $\left.2 \mathrm{H} ; 2 \times \mathrm{H}-10^{\prime}\right) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, $\left.\mathrm{D}_{3} \mathrm{COD}\right): \delta=139.6\left(\mathrm{C}-12^{\prime}\right), 115.4\left(\mathrm{C}-13^{\prime}\right), 101.9(\mathrm{C}-1), 74.7(\mathrm{C}-4)$, 72.7 (C-3), $72.3(\mathrm{C}-2), 71.7\left(\mathrm{C}-9{ }^{\prime}\right), 5 \times 71.7,71.5,71.3\left(\right.$ each $\left.\mathrm{CH}_{2}\right), 68.7(\mathrm{C}-5), 67.9(\mathrm{C}-1$) , 63.1 (C-6), 31.5 (C-11'), 30.2 (C-10') ppm

Coupling H-1/C-1 ($\mathrm{D}_{3} \mathrm{COD}$): ${ }^{1} \int_{\mathrm{H}-1, \mathrm{C}-1}=170.1 \mathrm{~Hz}$
ESI-TOF-HRMS (pos. mode): $m / z=447.2201[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calc. $m / z=447.2201[\mathrm{M}+\mathrm{Na}]^{+}$)

Pent-4-enyl 2,3,4,6-Tetra-O-acetyl- α-D-mannopyranoside (40)

40

$$
\begin{gathered}
\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{10} \\
416.42 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Pent-4-enol ($331 \mu \mathrm{~L}, 3.21 \mathrm{mmol}, 1.5 \mathrm{eq}$) and mannosyl donor $37(1.05 \mathrm{~g}, 2.14 \mathrm{mmol}, 1.0 \mathrm{eq})$ were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. After addition of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(27 \mu \mathrm{~L}, 0.21 \mathrm{mmol}, 0.1 \mathrm{eq})$, the mixtrure was stirred for 45 min at rt. After neutralization with $E t_{3} \mathrm{~N}$, water was added to the reaction mixture. The phases were separated and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was evaporated under reduced pressure. After FC (petroleum ether/EtOAc $4: 1$ to $3: 1$), pure 40 ($383 \mathrm{mg}, 0.920 \mathrm{mmol}, 43 \%$) was isolated as pale oil. The recorded spectroskopic data match those reported for title compound. ${ }^{[9]}$

Pent-4-enyl α-D-Mannopyranoside (10)

Peracetylated compound 40 ($383 \mathrm{mg}, 0.920 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dry $\mathrm{MeOH}(3 \mathrm{~mL})$ and a 0.5 M solution of NaOMe in $\mathrm{MeOH}(49 \mu \mathrm{~L}, 0.74 \mathrm{mmol}, 0.8 \mathrm{eq})$ was added. After stirring at rt for 70 min, the mixture was neutralized by addition of acidic ion-exchange resin (Dowex 50W-X8, H^{+} form) and filtrated. After removal of the solvent under reduced pressure, $\mathbf{1 0}$ ($222 \mathrm{~g}, 0.894 \mathrm{mmol}$, 97%) was isolated as a colorless oil. The recorded spectroskopic data match those reported for title compound. [10]

O-(2,3,4,6-Tetra-O-acetyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-O-acetyl- β-Dglucopyranosyl)trichloroacetimidate (41)

Lactosyl donor $41^{[11]}$ was obtained in three steps from lactose: 1) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; 2) $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, $\mathrm{AcOH} ; 3) \mathrm{NC}-\mathrm{CCl}_{3}, \mathrm{NaH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 70 \%$ over three steps.

N -(12-(2,3,4,6-Tetra-O-acetyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)-2,3,6-tri-O-acetyl- β-D-glucopyranosyl)-3,6,9,12-tetraoxa-dodecan-1-yl)-exo-norborn-5-en-2,3-dicarboximide (42)

42

$$
\begin{gathered}
\mathrm{C}_{43} \mathrm{H}_{59} \mathrm{NO}_{23} \\
957.92 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Dienophile-spacer conjugate $\mathbf{3 0}$ ($500 \mathrm{mg}, 1.47 \mathrm{mmol}, 1 \mathrm{eq}$) and lactosyl donor $41(1.97 \mathrm{~g}, 2.52 \mathrm{mmol}$, 1.71 eq) were dissolved at $0{ }^{\circ} \mathrm{C}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(83.0 \mu \mathrm{~L}$, $0.663 \mathrm{mmol}, 0.45 \mathrm{eq}$), the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and subsequently for 3.5 h at r. After neutralization with $\mathrm{Et}_{3} \mathrm{~N}$, water was added to the reaction mixture. The phases were separated and the aqueous phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was evaporated under reduced pressure. After FC
(petroleum ether/EtOAc from 1:3 to 1:5), 42 ($986 \mathrm{mg}, 1.03 \mathrm{mmol}, 70 \%$) was isolated as white foam.

TLC: $R_{f}=0.26$ (toluene/acetone 3:1)
$\mathbf{1}_{\mathbf{H}}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.28-6.25\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-5^{\prime \prime \prime}\right.$ ' and $\left.\mathrm{H}-6^{\prime \prime \prime}\right), 5.32(\mathrm{dd}, \mathrm{J}=3.3$, $0.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4$ '), 5.16 ('t', $J=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3$), 5.07 (dd, J = 10.4, $8.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2$ '), 4.93 (dd, $\left.J=10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3^{\prime}\right), 4.86(\mathrm{dd}, J=9.4,8.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2), 4.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H} ;$ H-1), 4.48-4.44 (m, $1 \mathrm{H} ; \mathrm{H}-6 \mathrm{a}$ "), 4.46 (d, J = 7,9 Hz, $1 \mathrm{H} ; \mathrm{H}-1^{\prime}$), 4.10 (dd, J = 11.2, 6.3 Hz, 1 H ; H-6a'), 4.07 (dd, J = 12.0, 5.2 Hz, $1 \mathrm{H} ; \mathrm{H}-6 \mathrm{~b}), 4.05$ (dd, $J=11.1,7.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{~b}$ '), 3.90-3.83 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{H}-1 \mathrm{a}$ " and $\mathrm{H}-5$ '), 3.76 ('t', J = $9.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4$), $3.71-3.64$ ($\mathrm{m}, 3 \mathrm{H} ; \mathrm{H}-1 \mathrm{~b}$ " and $2 \times \mathrm{H}-8$ '), 3.64-3.51 (m, $13 \mathrm{H} ; \mathrm{H}-5$ and $6 \times \mathrm{CH}_{2}$), 3.25-3.21 (m, $2 \mathrm{H} ; \mathrm{H}-1^{\prime \prime \prime}$ and H-4"'), 2.67-2.64 (m, 2 H ; H-2"' and H-3"'), $2.12\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.02$ (s, $\left.3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $1.93\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, 1.47-1.44 (m, $1 \mathrm{H} ; \mathrm{H}-7 \mathrm{a}^{\prime \prime}$ '), 1.35-1.32 (m, $1 \mathrm{H} ; \mathrm{H}-7 \mathrm{~b}^{\prime \prime}$ ') ppm
${ }^{13} \mathrm{C}$ NMR ($\left.150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=177.9\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 170.3,170.3,170.1,170.0,169.7,169.6$, 169.0 (each $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$), $137.8\left(\mathrm{C}-5^{\prime \prime}\right.$ ' and $\left.\mathrm{C}-6^{\prime \prime \prime}\right)$, $101.0(\mathrm{C}-1$ '), $100.6(\mathrm{C}-1), 76.2(\mathrm{C}-4), 72.8$ (C-3), $72.5(\mathrm{C}-5), 71.6(\mathrm{C}-2), 70.9(\mathrm{C}-3)$, $70.6\left(\mathrm{CH}_{2}\right), 70.6\left(\mathrm{CH}_{2}\right), 70.5(\mathrm{C}-5), 70.5\left(\mathrm{CH}_{2}\right)$, $70.2\left(\mathrm{CH}_{2}\right), 69.8\left(\mathrm{CH}_{2}\right), 69.0\left(\mathrm{C}-1^{\prime \prime}\right), 69.0\left(\mathrm{C}-2^{\prime}\right), 66.8\left(\mathrm{CH}_{2}\right), 66.5(\mathrm{C}-4), 62.0(\mathrm{C}-6), 60.7$ (C-6'), 47.7 (C-2"' and C-3"'), 45.2 (C-1"' and C-4"'), 42.6 (C-7"'), 37.7 (C-8"), 20.8, 20.7, 20.6, 20.6, 20.6, 20.5, 20.4 (each $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$) ppm

ESI-IT-MS (pos. mode): $m / z=980.4[\mathrm{M}+\mathrm{Na}]^{+}, 996.3[\mathrm{M}+\mathrm{K}]^{+}$(calc. $m / z=980.3[\mathrm{M}+\mathrm{Na}]^{+}$, 996.3 [M+K] ${ }^{+}$)

CHN analysis (in \%): C 53.82, H 6.22, N 1.46 (calc.: C 53.91, H 6.21, N 1.46)

N-(12-(β-D-Galactopyranosyl-(1 $\rightarrow 4$)- β-D-glucopyranosyl)-3,6,9,12-tetraoxa-dodecan-1-yl)-exo-norborn-5-en-2,3-dicarboximide (12)

Peracetylated compound 42 ($416 \mathrm{mg}, 0.434 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dry $\mathrm{MeOH}(4 \mathrm{~mL})$ and a 0.5 M solution of NaOMe in $\mathrm{MeOH}(122 \mu \mathrm{~L}, 60.8 \mu \mathrm{~mol}, 0.14 \mathrm{eq})$ was added. After stirring at rt for 3 h , the mixture was neutralized by addition of acidic ion-exchange resin (Dowex $50 \mathrm{~W}-\mathrm{X} 8, \mathrm{H}^{+}$form) and filtrated. After removal of the solvent under reduced pressure, $\mathbf{1 2}$ ($294 \mathrm{mg}, 0.443 \mathrm{mmol}$, quant.) was isolated as a colorless oil.
$\mathbf{1}_{\mathbf{H}}$ NMR ($600.1 \mathrm{MHz}, \mathrm{D}_{3} \mathrm{COD}$): $\delta=6.33$ ('t', $J=1.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-5^{\prime \prime}$ ' and $\mathrm{H}-6^{\prime \prime \prime}$), $4.37(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1), 4.35(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1), 4.03-3.97(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-1 \mathrm{a}$ "), $3.90(\mathrm{dd}, \mathrm{J}=12.1$, $2.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{a}), 3.84(\mathrm{dd}, J=12.2,4.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{~b}), 3.83-3.82\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-4{ }^{\prime}\right)$, 3.78 (dd ,
$\left.J=11.4,7.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{a}^{\prime}\right)$, $3.76-3.52\left(\mathrm{~m}, 20 \mathrm{H} ; \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-2^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6 \mathrm{~b}^{\prime}, \mathrm{H}-1 \mathrm{~b}^{\prime \prime}\right.$ and 7 x CH_{2}), $3.50(\mathrm{dd}, \mathrm{J}=9.8,3.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3 '), 3.42(\mathrm{ddd}, J=9.4,4.4,2.6 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-5), 3.27$ ('t', $J=8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2$), 3.18 ('quin', $J=1.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-1$ '' and $\mathrm{H}-4$ "'), $2.72(\mathrm{br} . \mathrm{d}, J=1.4 \mathrm{~Hz}$, $2 \mathrm{H} ; \mathrm{H}-2$ "' and H-3"' $)$, 1.47-1.44 (m, $1 \mathrm{H} ; \mathrm{H}-7 \mathrm{a}{ }^{\prime \prime}$) , 1.40-1.37 (m, $1 \mathrm{H} ; \mathrm{H}-7 \mathrm{~b}^{\prime \prime}$) $) \mathrm{ppm}$
${ }^{13}$ C NMR ($\left.150.9 \mathrm{MHz}, \mathrm{D}_{3} \mathrm{COD}\right): \delta=180.2\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right)$, 139.1 ($\mathrm{C}-5^{\prime \prime \prime}$ and $\mathrm{C}-6^{\prime \prime \prime}$), $105.2\left(\mathrm{C}-1^{\prime}\right)$, $104.4(\mathrm{C}-1), \quad 80.8(\mathrm{C}-4), 77.2(\mathrm{C}-5 \prime), 76.6(\mathrm{C}-5), 76.4(\mathrm{C}-3), 74.9(\mathrm{C}-3 \prime), 74.8(\mathrm{C}-2), 72.6$ (C-2'), 71.7, $3 \times 71.6,71.1\left(\mathrm{CH}_{2}\right), 70.4(\mathrm{C}-4 \prime), 69.9\left(\mathrm{C}-1^{\prime \prime}\right), 68.0\left(\mathrm{CH}_{2}\right), 62.6(\mathrm{C}-6 \prime), 62.1$ (C-6), 49.1 (C-2"' and C-3"' $)$, 46.6 (C-1"' and C-4"'), $43.7\left(\mathrm{C}-7{ }^{\prime \prime \prime}\right)$, $39.1\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$
ESI-IT-MS (pos. mode): $m / z=686.0[\mathrm{M}+\mathrm{Na}]^{+}, 702.0[\mathrm{M}+\mathrm{K}]^{+}$(calc. $m / z=686.3[\mathrm{M}+\mathrm{Na}]^{+}$, $702.2[\mathrm{M}+\mathrm{K}]^{+}$)
CHN analysis (in \%): C 52.37, H 6.79, N 2.07 (calc.: C 52.48, H 6.83, N 2.11)

Synthesis of Probes for Negative Controls

Figure S5: Synthesis of probes for negative controls

N -(12-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl)-3,6,9,12-tetraoxa-dodecan-1-yl)-exo-norbornan-2,3-dicarboximide (43)

Conjugate 35 ($210 \mathrm{mg}, 314 \mathrm{mmol}$) was dissolved in EtOAc (3 mL) and Pd on carbon ($35 \mathrm{mg}, 10 \mathrm{wt}$. \% loading) was added. After stirring over night under 1 atm of hydrogen gas, the catalyst was removed by filtration through celite followed by removal of the solvent under reduced pressure. Without
further purification, 43 ($207 \mathrm{mg}, 309 \mathrm{mmol}, 98 \%$) was obtained as a colourless oil.

TLC: $R_{f}=0.31(E t O A c / M e O H 10: 1)$
RP-HPLC ($30-90 \% \mathrm{~B}$ in 20 min): $t_{R}=11.46 \mathrm{~min}$
$\mathbf{1}_{\mathbf{H}}$ NMR ($399.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=6.60(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 5.10-4.99(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-3$ and H-4), $4.77(d, J=8.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1), 4.22(\mathrm{dd}, J=12.3,4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{a}), 4.09$ (dd, $J=12.3$, 2.4 Hz, $1 \mathrm{H} ; \mathrm{H}-6 \mathrm{~b})$, $4.07-4.00(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-2)$, $3.88-3.74\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.72-3.50(\mathrm{~m}, 15 \mathrm{H} ; \mathrm{H}-5$ and $7 \times \mathrm{CH}_{2}$), 2.66-2.63 (m, $2 \mathrm{H} ; \mathrm{H}-1^{\prime \prime}$ and $\left.\mathrm{H}-4^{\prime \prime}\right), 2.58\left(\mathrm{br} . \mathrm{s}, 2 \mathrm{H} ; \mathrm{H}-2^{\prime \prime}\right.$ and $\left.\mathrm{H}-3^{\prime \prime}\right), 2.04(\mathrm{~s}, 3 \mathrm{H}$; $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.91\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.67-1.60$ (m, $2 \mathrm{H} ; \mathrm{H}-5 \mathrm{a} "$ and $\mathrm{H}-6 \mathrm{a} ")$, 1.35-1.28 (m, $2 \mathrm{H} ; \mathrm{H}-5 \mathrm{~b}$ " and H-6b"), 1.20-1.13 (m, $2 \mathrm{H} ; \mathrm{H}-7{ }^{\prime \prime}$) ppm ${ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.78\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 170.7,170.6,170.5,169.2$ (each $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 101.8(\mathrm{C}-1), 73.3(\mathrm{C}-3), 71.6(\mathrm{C}-5), 71.5,70.7,70.5,70.3,70.0\left(\right.$ each $\left.\mathrm{CH}_{2}\right), 68.7$ $(\mathrm{C}-4), 68.6\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 62.2(\mathrm{C}-6), 53.9(\mathrm{C}-2), 48.5\left(\mathrm{C}-2^{\prime \prime}\right.$ and $\left.\mathrm{C}-3^{\prime \prime}\right), 39.7(\mathrm{C}-1$ " and $\left.\mathrm{C}-4^{\prime \prime}\right), 37.7\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{C}-7^{\prime \prime}\right), 28.0\left(\mathrm{C}-5^{\prime \prime}\right.$ and $\left.\mathrm{C}-6^{\prime \prime}\right), 22.9,20.7,20.6,20.5\left(\right.$ each $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$ ppm
ESI-TOF-HRMS (pos. mode): $m / z=671.3012[M+H]^{+}, 693.2822[M+N a]^{+}$(calc. $m / z=$ $\left.671.3022[\mathrm{M}+\mathrm{H}]^{+}, 693.2841[\mathrm{M}+\mathrm{Na}]^{+}\right)$

N-(12-(2-Acetamido-2-deoxy- β-D-glucopyranosyl)-3,6,9,12-tetraoxa-dodecan-1-yl)-exo-norbornan-2,3-dicarboximide (7)

Peracetylated compound 43 ($163 \mathrm{mg}, 0.243 \mathrm{mmol}, 1$ eq) was dissolved in dry $\mathrm{MeOH}(3 \mathrm{~mL})$ and a 0.5 M solution of NaOMe in $\mathrm{MeOH}(58 \mu \mathrm{~L}, 29 \mu \mathrm{~mol}, 0.12 \mathrm{eq})$ was added. After stirring at rt for 2 h , the mixture was neutralized by addition of acidic ion-exchange resin (Dowex $50 \mathrm{~W}-\mathrm{X} 8, \mathrm{H}^{+}$form) and filtrated. After removal of the solvent under reduced pressure, 7 ($91 \mathrm{mg}, 0.167 \mathrm{mmol}, 69 \%$) was isolated as a colorless oil.

RP-HPLC ($5-60 \% \mathrm{~B}$ in 20 min): $t_{R}=15.72 \mathrm{~min}$
$\mathbf{1}_{\mathbf{H}}$ NMR ($399.8 \mathrm{MHz}, \mathrm{D}_{3} \mathrm{COD}$): $\delta=4.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1$), 3.93 (ddd, $J=11.2,4.8$, $3.7 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H}-1$ '), 3.88 (dd, J = 2.2, , Hz, H-6a H; 12.0) $3.74-3.55$ (m, $17 \mathrm{H} ; \mathrm{H}-2, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-1 \mathrm{~b}{ }^{\prime}$ and $7 \times \mathrm{CH}_{2}$), $3.44(\mathrm{dd}, J=10.3,8.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3), 3.32(\mathrm{dd}, J=9.7,8.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4), 3.27$ (ddd, J = 9.7, 5.5, 2.2 Hz $1 \mathrm{H} ; \mathrm{H}-5$), 2.67 (br. s, $2 \mathrm{H} ; \mathrm{H}-2^{\prime \prime}$ and $\mathrm{H}-3$ "), 2.61-2.58 (m, $2 \mathrm{H} ; \mathrm{H}-1^{\prime \prime}$ and $\mathrm{H}-4 "), 1.99\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), \quad 1.71-1.64\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-5 a^{\prime \prime}\right.$ and $\left.\mathrm{H}-6 \mathrm{a}^{\prime \prime}\right)$, $1.42-1.35\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-5 \mathrm{~b}^{\prime \prime}\right.$ and H-6b"), 1.27-1.18 (m, $\left.2 \mathrm{H} ; \mathrm{H}-7{ }^{\prime \prime}\right) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR ($\left.100.5 \mathrm{MHz}, \mathrm{D}_{3} \mathrm{COD}\right): \delta=181.2\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 174.0\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 102.9(\mathrm{C}-1), 78.1$
(C-5), $76.4(\mathrm{C}-3), 72.3(\mathrm{C}-4), 71.8,3 \times 71.7,71.1\left(\right.$ each $\left.\mathrm{CH}_{2}\right), 70.0\left(\mathrm{C}-1\right.$ '), $68.0\left(\mathrm{CH}_{2}\right), 63.0$ (C-6), $57.6(\mathrm{C}-2), 50.0\left(\mathrm{C}-2^{\prime \prime}\right.$ and $\left.\mathrm{C}-3^{\prime \prime}\right), 41.2\left(\mathrm{C}-1^{\prime \prime}\right.$ and $\left.\mathrm{C}-4^{\prime \prime}\right), 33.1\left(\mathrm{C}-8^{\prime}\right), 33.9\left(\mathrm{C}-7^{\prime \prime}\right), 29.1$ (C-5" and $\mathrm{C}-6$ "), $23.2\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) \mathrm{ppm}$
ESI-TOF-HRMS (pos. mode): $m / z=545.2693[\mathrm{M}+\mathrm{H}]^{+}, 567.2526[\mathrm{M}+\mathrm{Na}]^{+}$(calc. $\mathrm{m} / \mathrm{z}=$ $\left.545.2716[\mathrm{M}+\mathrm{H}]^{+}, 567.2530[\mathrm{M}+\mathrm{Na}]^{+}\right)$

N -(12-(2,3,4,6-Tetra-O-acetyl- α-D-mannopyranosyl)-3,6,9,12-tetraoxa-dodecan-1-yl)-exo-norbornan-2,3-dicarboximide (44)

Conjugate 38 ($118 \mathrm{mg}, 176 \mathrm{mmol}$) was dissolved in EtOAc (5 mL) and Pd on carbon ($35 \mathrm{mg}, 10 \mathrm{wt}$. \% loading) was added. After stirring over night under 1 atm of hydrogen gas, the catalyst was removed by filtration through celite followed by removal of the solvent under reduced pressure. Without further purification, 44 ($106 \mathrm{mg}, 158 \mathrm{mmol}, 90 \%$) was obtained as a colourless oil.

TLC: $R_{f}=0.36(\mathrm{EtOAc})$
$\mathbf{1}_{\mathbf{H}} \mathbf{N M R}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.31(\mathrm{dd}, \mathrm{J}=10.0,3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3), 5.24$ ('t', $J=9.9 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{H}-4), 5.22(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2), 4.83(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1), 4.25(\mathrm{dd}, J=12.2$, 4.9 Hz, $1 \mathrm{H} ; \mathrm{H}-6 \mathrm{a}$), 4.06 (dd, $J=12.2,2.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{~b}$), 4.03 (ddd, J = 5.0, 2.4, H-5 Hz 1 H ; 10.0), 3.81-3.74 (m, $\left.1 \mathrm{H} ; \mathrm{H}-1 \mathrm{a}^{\prime}\right), 3.67-3.52\left(\mathrm{~m}, 15 \mathrm{H} ; \mathrm{H}-1 \mathrm{~b}^{\prime}, 7 \times \mathrm{CH}_{2}\right), 2.65-2.63(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-1$ " and H-4"), 2.56 (br. s, $2 \mathrm{H} ; \mathrm{H}-2^{\prime \prime}$ and $\mathrm{H}-3^{\prime \prime}$), $2.11\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $2.00\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 1.65-1.60(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-5 \mathrm{a}$ " and $\mathrm{H}-6 \mathrm{a}$ "), 1.33-1.28 (m, $2 \mathrm{H} ; \mathrm{H}-5 \mathrm{~b}$ " and H-6b"), 1.20-1.13 (m, $2 \mathrm{H} ; \mathrm{H}-7{ }^{\prime \prime}$) ppm
${ }^{13} \mathrm{C}$ NMR $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.8\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 170.6,169.9,169.8,169.6$ (each $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), \quad 97.6(\mathrm{C}-1), 70.6,70.5,70.5,69.9,69.8\left(\right.$ each $\left.\mathrm{CH}_{2}\right), 69.5(\mathrm{C}-2), 69.0(\mathrm{C}-3), 68.3$ (C-5), $67.3\left(\mathrm{C}-1{ }^{\prime}\right), 66.8\left(\mathrm{CH}_{2}\right), 66.1(\mathrm{C}-4), 62.3(\mathrm{C}-6), 48.5\left(\mathrm{C}-2^{\prime \prime}\right.$ and $\left.\mathrm{C}-3^{\prime \prime}\right), 39.7\left(\mathrm{C}-1^{\prime \prime}\right.$ and $\mathrm{C}-4$ " $), 37.7\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{C}-9 \prime\right.$), $28.0\left(\mathrm{C}-5^{\prime \prime}\right.$ and $\mathrm{C}-6$ " $), 20.8,20.7,20.6,20.6\left(\right.$ each $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$ ppm
Coupling $\mathbf{H - 1} / \mathbf{C - 1}\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{~J}_{\mathrm{H}-1, \mathrm{C}-1}=172.7 \mathrm{~Hz}$
ESI-IT-MS (pos. mode): $m / z=694.2[\mathrm{M}+\mathrm{Na}]^{+}, 710.2[\mathrm{M}+\mathrm{K}]^{+}\left(\right.$calc. $m / z=694.3[\mathrm{M}+\mathrm{Na}]^{+}$, $710.2[\mathrm{M}+\mathrm{K}]^{+}$)
CHN analysis (in \%): C 55.40, H 6.80, N 2.12 (calc.: C $55.43, \mathrm{H} 6.75, \mathrm{~N} 2.09$)

N-(12-(α-D-Mannopyranosyl)-3,6,9,12-tetraoxa-dodecan-1-yl)-exo-norbornan-2,3dicarboximide (11)

Peracetylated compound 44 ($279 \mathrm{mg}, 0.415 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in dry $\mathrm{MeOH}(4 \mathrm{~mL})$ and a 0.5 M solution of NaOMe in $\mathrm{MeOH}(67 \mu \mathrm{~L}, 33.2 \mu \mathrm{~mol}, 0.08 \mathrm{eq})$ was added. After stirring at rt for 2 h , the mixture was neutralized by addition of acidic ion-exchange resin (Dowex 50W-X8, H^{+}form) and filtrated. After removal of the solvent under reduced pressure, $\mathbf{1 1}$ ($204 \mathrm{mg}, 0.405 \mathrm{mmol}, 97 \%$) was isolated as a colorless oil.
$\mathbf{1}_{\mathbf{H}}$ NMR (600.1 MHz, $\left.\mathrm{D}_{3} \mathrm{COD}\right): \delta=4.80(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1)$, 3.86-3.81(m,3H;H-2, H-6a and H-1a'), 3.71-3.68 (m, $2 \mathrm{H} ; \mathrm{H}-3, \mathrm{H}-6 \mathrm{~b})$, $3.68-3.59\left(\mathrm{~m}, 12 \mathrm{H} ; \mathrm{H}-5, \mathrm{H}-1 \mathrm{~b}^{\prime}\right.$ and $5 \times \mathrm{CH}_{2}$), 3.59-3.55 (m, $5 \mathrm{H} ; \mathrm{H}-4,2 \times \mathrm{CH}_{2}$), 2.67-2.66 (m, $2 \mathrm{H} ; \mathrm{H}-2$ " and $\mathrm{H}-3$ "), 2.60-2.58 (m, $2 \mathrm{H} ; \mathrm{H}-1^{\prime \prime}$ and H-4"), 1.70-1.65 (m, $2 \mathrm{H} ; \mathrm{H}-5 \mathrm{a}^{\prime \prime}$ and H-6a"), 1.41-1.36 (m, $2 \mathrm{H} ; \mathrm{H}-5 \mathrm{~b}^{\prime \prime}$ and $\left.\mathrm{H}-6 \mathrm{~b}^{\prime \prime}\right)$, 1.26-1.19 (m, $2 \mathrm{H} ; \mathrm{H}-7{ }^{\prime \prime}$) ppm
${ }^{13} \mathrm{C}$ NMR (150.9 MHz, $\left.\mathrm{D}_{3} \mathrm{COD}\right): \delta=181.2\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 101.9(\mathrm{C}-1), 74.7(\mathrm{C}-4), 72.7(\mathrm{C}-3)$, $72.3(\mathrm{C}-2), 3 \times 71.7,71.5,71.2\left(\right.$ each $\left.\mathrm{CH}_{2}\right), 68.8(\mathrm{C}-5), 68.0\left(\mathrm{CH}_{2}\right), 97.9(\mathrm{C}-1$) $), 63.1(\mathrm{C}-6)$, 50.0 (C-2" and C-3"), 41.2 (C-1" and C-4"), 39.1 (C-8'), 33.9 (C-7"), 29.1 (C-5" and C-6") ppm Coupling H-1/C-1 ($\mathrm{D}_{3} \mathrm{COD}$): ${ }^{1} \mathrm{~J}_{\mathrm{H}-1, \mathrm{C}-1}=170.4 \mathrm{~Hz}$
ESI-IT-MS (pos. mode): $m / z=526.0[\mathrm{M}+\mathrm{Na}]^{+}, 542.0[\mathrm{M}+\mathrm{K}]^{+}$(calc. $m / z=526.2[\mathrm{M}+\mathrm{Na}]^{+}$, $\left.542.2[\mathrm{M}+\mathrm{K}]^{+}\right)$
CHN analysis (in \%): C 54.76, H 7.34, N 2.72 (calc.: C 54.86, H 7.41, N 2.78)

N-(12-O-Acetyl-3,6,9,12-tetraoxa-dodecan-1-yl)-exo-norborn-5-en-2,3-dicarboximide (13)

$$
\begin{gathered}
\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{7} \\
381.42 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Dienophile-spacer conjugate 30 ($500 \mathrm{mg}, 1.47$, 1.0 eq) was dissolved in pyridine (5 mL) and acetic anhydride ($280 \mu \mathrm{~L}, 2.95 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added. After stirring at rt for 15 h , the solvent was removed under reduced pressure and the residue was coevaporated twice with toluene. 13 (557 mg , $1.46 \mathrm{mmol}, 99 \%$) was isolated as slidly yellow oil without the need for further purification.
$\mathbf{1}_{\mathbf{H}}$ NMR ($399.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.24$ ('t', $J=1.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-5$ and $\mathrm{H}-6$), $4.17\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right)$, $3.67-3.51\left(\mathrm{~m}, 14 \mathrm{H} ; 7 \times \mathrm{CH}_{2}\right), 3.22$ ('quin', $J=1.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-1$ and $\left.\mathrm{H}-4\right), 2.63(\mathrm{~d}, J=1.5 \mathrm{~Hz}$,
$2 \mathrm{H} ; \mathrm{H}-2$ and $\mathrm{H}-3), 2.03\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.46-1.42(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-7 \mathrm{a}), 1.34-1.30(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-7 \mathrm{~b}) \mathrm{ppm}$ ${ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=177.8\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 170.9\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 137.7(\mathrm{C}-5$ and $\mathrm{C}-6)$, $3 \times 70.5,69.8,69.0,66.8,63.5\left(\right.$ each $\left.\mathrm{CH}_{2}\right), 47.7(\mathrm{C}-2$ and $\mathrm{C}-3), 45.2(\mathrm{C}-1$ and $\mathrm{C}-4), 42.6(\mathrm{C}-7)$, $37.6\left(\mathrm{CH}_{2}\right), 20.8\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$
ESI-IT-MS (pos. mode): $m / z=382.1[\mathrm{M}+\mathrm{H}]^{+}, 404.1[\mathrm{M}+\mathrm{Na}]^{+}, 420.0[\mathrm{M}+\mathrm{K}]^{+}($calc. $m / z=382.2$ $\left.[\mathrm{M}+\mathrm{H}]^{+}, 404.2[\mathrm{M}+\mathrm{Na}]^{+}, 420.1[\mathrm{M}+\mathrm{K}]^{+}\right)$
CHN analysis (in \%): C 59.73, H 7.12, N 3.71 (calc.: C 59.83, H 7.14, N 3.67)

Preparation of the Bifunctional Linker

Figure S6: Synthesis of bifunctional linker 18

N-(11-(Tolylsulfonyloxy)-3,6,9-trioxaundecan-1-yl)-exo-norborn-5-en-2,3-dicarboximide (45)

45

$$
\begin{gathered}
\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{8} \mathrm{~S} \\
493.57 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Alcohol $30(1.54 \mathrm{~g}, 4.54 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissoved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.15 \mathrm{~mL}$, $8.17 \mathrm{mmol}, 1.8 \mathrm{eq})$ and $\mathrm{TsCl}(1.30 \mathrm{~g}, 6.81 \mathrm{mmol}, 1.50 \mathrm{eq})$ were added at $0^{\circ} \mathrm{C}$. After stirring at rt for 24 h , the reaction mixture was neutralized with acetic acid and quenched with water. The layers were separated and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was removed under reduced pressure. After FC (petroleum ether/EtOAc $1: 2$ to $0: 1$), 45 ($2.06 \mathrm{~g}, 4.11 \mathrm{mmol}, 91 \%)$ was isolated as pale oil.

TLC: $R_{f}=0.23$ (petroleum ether/EtOAc 1:1)
$\mathbf{1}_{\mathbf{H}} \mathbf{N M R}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.80(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}), 6.28$ ('t', J = $1.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-5$ and $\mathrm{H}-6), 4.16\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.70-3.66\left(\mathrm{~m}, 4 \mathrm{H} ; 2 \times \mathrm{CH}_{2}\right), 3.65-3.62(\mathrm{~m}, 2 \mathrm{H}$; CH_{2}), 3.58-3.53 (m, $8 \mathrm{H} ; 4 \times \mathrm{CH}_{2}$), 3.26 ('quin', $J=1.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-1$ and $\mathrm{H}-4$), $2.67(\mathrm{~d}, \mathrm{~J}=$
$1.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-2$ and $\mathrm{H}-3), 2.45\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.49-1.46(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-7 \mathrm{a}), 1.37-1.34(\mathrm{~m}, 1 \mathrm{H} ;$ H-7b) ppm
${ }^{13} \mathrm{C}$ NMR $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.0\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 144.8$ (quat. C), 137.8 ($\mathrm{C}-5$ and $\mathrm{C}-6$), 133.1 (quat. C), 129.8, 128.0 (both Ar), 70.7, 70.6, 70.6, 69.9, 69.2, 68.7, $66.9\left(\right.$ each $\left.\mathrm{CH}_{2}\right), 47.8$ (C-2 and C-3), $45.3(\mathrm{C}-1$ and $\mathrm{C}-4), 42.7(\mathrm{C}-7), 37.7\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$
ESI-IT-MS (pos. mode): $m / z=494.3[\mathrm{M}+\mathrm{H}]^{+}, 516.3[\mathrm{M}+\mathrm{Na}]^{+}, 532.2[\mathrm{M}+\mathrm{K}]^{+}($calc. $m / z=494.2$ $\left.[\mathrm{M}+\mathrm{H}]^{+}, 516.2[\mathrm{M}+\mathrm{Na}]^{+}, 532.1[\mathrm{M}+\mathrm{K}]^{+}\right)$
CHN analysis (in \%): C 58.30, H $6.49, \mathrm{~N} 2.79$ (calc.: C 58.40, H $6.33, \mathrm{~N} 2.84$)

N-(11-(N-(tert-Butyloxycarbonyl)aminooxy)-3,6,9-trioxaundecan-1-yl)-exo-norborn-5-en-2,3dicarboximide (46)

46

$$
\begin{gathered}
\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{8} \\
454.51 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

N-Boc-hydroxyl amine ($265 \mathrm{mg}, 1.99 \mathrm{mmol}, 2.0 \mathrm{eq}$) was dissoved in dry DMF (5 mL) and $\mathrm{NaH}(60 \%$ $(\mathrm{w} / \mathrm{w})$ in mineral oil, $119 \mathrm{mg}, 2.98 \mathrm{mmol}, 3.0 \mathrm{eq})$ was added at $0^{\circ} \mathrm{C}$. After 10 min , tosylate 45 ($500 \mathrm{mg}, 1.01 \mathrm{mmol}, 1 \mathrm{eq}$) in 3 mL dry DMF was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . After neutalization with acetic acid, the solvent was removed under reduced pressure. The residue was redissolved in a mixture of water and EtOAc. the layers were separated and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was removed under reduced pressure. After FC (petroleum ether/EtOAc 1:3), 46 (357 mg , $0.786 \mathrm{mmol}, 79 \%)$ was isolated as a pale oil.

TLC: $R_{f}=0.31$ (EtOAc)
$\mathbf{1}_{\mathbf{H}} \mathbf{N M R}\left(399.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71$ (br. s, $1 \mathrm{H} ; \mathrm{NH}$), 6.27 ('t', J $=1.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-5$ and $\mathrm{H}-6), 4.01\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.73-3.55\left(\mathrm{~m}, 14 \mathrm{H} ; 7 \times \mathrm{CH}_{2}\right), 3.26$ ('quin', J $=1.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-1$ and $\mathrm{H}-4), 2.68(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-2$ and $\mathrm{H}-3), 1.49-1.44\left(\mathrm{~m}, 10 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $\left.\mathrm{H}-7 \mathrm{a}\right), 1.36-1.31$ (m, $1 \mathrm{H} ; \mathrm{H}-7 \mathrm{~b}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.0\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 156.7(\mathrm{NC}(\mathrm{O}) \mathrm{O}), 137.8(\mathrm{C}-5$ and $\mathrm{C}-6)$,
 $\mathrm{C}-4), 42.7(\mathrm{C}-7), 37.7\left(\mathrm{CH}_{2}\right), \quad 28.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm}$
ESI-IT-MS (pos. mode): $m / z=477.0[\mathrm{M}+\mathrm{Na}]^{+}, 493.0[\mathrm{M}+\mathrm{K}]^{+}$(calc. $m / z=477.2[\mathrm{M}+\mathrm{Na}]^{+}$, $493.2[\mathrm{M}+\mathrm{K}]^{+}$)
CHN analysis (in \%): C 57.92, H 7.51, N 6.18 (calc.: C 58.14, H 7.54, N 6.16)

N-(11-Aminooxy-3,6,9-trioxaundecan-1-yl)-exo-norborn-5-en-2,3-dicarboximide, TFA salt (18)

18

$$
\begin{gathered}
\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \\
354.40 \mathrm{~g} \mathrm{~mol}^{-1}
\end{gathered}
$$

Boc-protected oxyamine 46 ($345 \mathrm{mg}, 0.759 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and TFA $(2.5 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 1 h , the solvent was removed in a stream of nitrogen. The residue was dissolved in a small amount of water and lyophilised. This procedure was repeated twice, in order to remove excess TFA. 18 ($364 \mathrm{mg}, 0.78 \mathrm{mmol}$, quant.) was isolated as a pale oil.

TLC: $R_{f}=0.09$ (EE/MeOH 20:1)
RP-HPLC (20-40 \% B in 20 min$): t_{R}=9.71 \mathrm{~min}$
$\mathbf{1}_{\mathbf{H}}$ NMR (399.8 MHz, CDCl 3): $\delta=6.29$ ('t', $J=\mathrm{H}-5$ and $\mathrm{H}-6 \mathrm{~Hz}, 2 \mathrm{H} ; 1.8$), $4.29\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right)$, $3.90\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.75-3.70\left(\mathrm{~m}, 4 \mathrm{H} ; 2 \times \mathrm{CH}_{2}\right), 3.62-3.57\left(\mathrm{~m}, 4 \mathrm{H} ; 2 \times \mathrm{CH}_{2}\right), 3.55(\mathrm{~m}, 4 \mathrm{H}$; $2 \times \mathrm{CH}_{2}$), 3.27 ('quin', $J=1.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-1$ and $\mathrm{H}-4$), $2.73(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}-2$ and $\mathrm{H}-3)$, 1.52-1.47 (m, $1 \mathrm{H} ; \mathrm{H}-7 \mathrm{a})$, 1.29-1.25 (m, $1 \mathrm{H} ; \mathrm{H}-7 \mathrm{~b}) \mathrm{ppm}$
${ }^{13} \mathbf{C}$ NMR $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=179.1\left(\mathrm{~N}(\mathrm{C}=\mathrm{O})_{2}\right), 137.8(\mathrm{C}-5$ and $\mathrm{C}-6), 72.5,71.1,70.0$, $69.7,69.6,69.5,68.0\left(\right.$ each $\left.\mathrm{CH}_{2}\right), 47.8(\mathrm{C}-2$ and $\mathrm{C}-3), 45.3(\mathrm{C}-1$ and $\mathrm{C}-4), 42.5(\mathrm{C}-7), 38.6$ $\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$
CHN analysis (in \%): C 49.06, H 5.98, N 6.37 (calc.: C 48.72, H 5.81, N 5.98)
ESI-TOF-HRMS (pos. mode): $m / z=355.1858[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calc. $\left.m / z=355.1864[\mathrm{M}+\mathrm{H}]^{+}\right)$

References

[1] M. Wiessler, E. Mueller, P. Lorenz, C. Kliem, H. Fleischhacker, PCT Int. Appl. 2007, WO 2007/144200 A1.
[2] C. Du, G. Zhang, Z. Wang, L. Li, J. Tang, L. Wang, Chin. Sci. Bull. 2009, 54, 382-386.
[3] P. S. Shirude, V. A. Kumar, K. N. Ganesh, Eur. J. Org. Chem 2005, 5207-5215.
[4] S. Svedhem, C.-A. Hollander, J. Shi, P. Konradsson, B. Liedberg, S. C. T. Svensson, J. Org. Chem. 2001, 66, 4494-4503.
[5] J. D. White, P. Hrnciar, J. Org. Chem. 2000, 65, 9129-9142.
[6] S. Nakabayashi, C. D. Warren, R. W. Jeanloz, Carbohydr. Res. 1986, 150, c7-c10.
[7] V. Wittmann, D. Lennartz, Eur. J. Org. Chem 2002, 1363-1367.
[8] M. Mori, Y. Ito, T. Ogawa, Carbohydr. Res. 1990, 195, 199-224.
[9] C.-C. Lin, Y.-C. Yeh, C.-Y. Yang, C.-L. Chen, G.-F. Chen, C.-C. Chen, Y.-C. Wu, J. Am. Chem. Soc. 2002, 124, 3508-3509.
[10] I. Cumpstey, T. D. Butters, R. J. Tennant-Eyles, A. J. Fairbanks, R. R. France, M. R. Wormald, Carbohydr. Res. 2003, 338, 1937-1949.
[11] F. G. Núñez, M. T. C. Valdes, E. Aruca, R. R. Schmidt, V. V. Bencomo, J. Carbohydr. Chem. 2003, 22, 395-406.

Figure S7: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 399.8 \mathrm{MHz}$) of compound $\mathbf{2 5}$

Figure S8: ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100.5 \mathrm{MHz}$) of compound $\mathbf{2 5}$

Figure S9: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 399.8 \mathrm{MHz}$) of compound $\mathbf{1 5}$

Figure S10: ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6}, 100.5 \mathrm{MHz}$) of compound $\mathbf{1 5}$

Figure S11: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 399.8 \mathrm{MHz}\right)$ of compound 2

Figure S12: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}\right)$ of compound 2

Figure S13: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 399.8 \mathrm{MHz}\right)$ of compound 4

Figure S14: ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}\right)$ of compound 4

Figure S15: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 399.8 \mathrm{MHz}\right)$ of compound $\mathbf{3 5}$

Figure S16: ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}\right)$ of compound $\mathbf{3 5}$

Figure S17: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{3} \mathrm{COD}, 399.8 \mathrm{MHz}\right)$ of compound 5

Figure S18: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}, 100.5 \mathrm{MHz}$) of compound $\mathbf{5}$

Figure S19: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 399.8 \mathrm{MHz}\right)$ of compound $\mathbf{3 6}$

Figure S20: ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}\right)$ of compound 36

PROTON MeOD /DATA/topspin heb 47

Figure S21: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{3} \mathrm{COD}, 399.8 \mathrm{MHz}\right)$ of compound $\mathbf{6}$

Figure S22: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}, 100.5 \mathrm{MHz}$) of compound $\mathbf{6}$

Figure S23: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600.1 \mathrm{MHz}\right)$ of compound 38

Figure S24: ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 150.9 \mathrm{MHz}\right)$ of compound 38

Figure S25: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{3} \mathrm{COD}, 600.1 \mathrm{MHz}\right)$ of compound 8

Figure S26: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{3} \mathrm{COD}, 150.9 \mathrm{MHz}\right)$ of compound 8

Figure S27: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 399.8 \mathrm{MHz}\right)$ of compound 39

Figure S28: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}\right)$ of compound 39

PROTON MeOD /opt/topspin heb 37

Figure S29: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 399.8 \mathrm{MHz}\right)$ of compound $\mathbf{9}$

Figure S30: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}\right)$ of compound $\mathbf{9}$

Figure S31: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600.1 \mathrm{MHz}\right)$ of compound 42

Figure S32: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150.9 \mathrm{MHz}\right)$ of compound 42

Figure S33: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{3} \mathrm{COD}, 600.1 \mathrm{MHz}\right)$ of compound 12

Figure S34: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}, 150.9 \mathrm{MHz}$) of compound $\mathbf{1 2}$

PROTON CDCI3 /DATA/topspin heb 4

Figure S35: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 399.8 \mathrm{MHz}\right)$ of compound 43

Figure S36: ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}\right)$ of compound 43

Figure S37: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{3} \mathrm{COD}, 399.8 \mathrm{MHz}\right)$ of compound 7

Figure S38: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}, 100.5 \mathrm{MHz}$) of compound 7

Figure S39: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600.1 \mathrm{MHz}\right)$ of compound 44
(

Figure S40: ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 150.9 \mathrm{MHz}\right)$ of compound 44

Figure S41: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{3} \mathrm{COD}, 600.1 \mathrm{MHz}\right)$ of compound $\mathbf{1 1}$

Figure S42: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{3} \mathrm{COD}, 150.9 \mathrm{MHz}\right)$ of compound $\mathbf{1 1}$

Figure S43: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 399.8 \mathrm{MHz}\right)$ of compound 18

Figure S44: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}\right)$ of compound 18

