1	Supplementary Materials
2	
3	
4	Muropeptide rescue in <i>Bacillus subtilis</i> involves sequential hydrolysis by
5	exo-β- <i>N</i> -acetylglucosaminidase and <i>N</i> -acetylmuramyl-L-alanine amidase
6	Silke Litzinger ¹ , Amanda Duckworth ¹ , Katja Nitzsche ¹ , Christian Risinger ² ,
7	Valentin Wittman ² and Christoph Mayer ^{1*}
8	
9	

Synthesis of 4-Methylumbelliferyl-2-amino-2-deoxyglucopyranoside 5 1

4

6

5 Scheme 1. Synthesis of 4-Methylumbelliferyl-2-amino-2-deoxyglucopyranoside 5

- 7 4-Methylumbelliferyl glycoside 4 (3, 5, 6) was synthesized by an improved procedure 8 (Scheme 1). Troc protected trichloroacetimidate 1 (2) and 4-Methylumbelliferone 2 were 9 reacted under BF_3 catalysis. The obtained glycoside **3** was then deprotected in two steps to 10 yield the desired compound 5.
- 11

12 **Experimental Section**

13 14

General Methods: Cation exchange resin Amberlite IR-120 (H⁺) was pre-washed with dry 15 MeOH before use. Analytical thin layer chromatography (TLC) was performed on Merck 16 Silica Gel 60 F245 aluminium sheets (thickness 0.2 mm). Compound spots were visualized by 17 quenching of fluorescence and/or by charring after treatment with cerium reagent (5 g 18 molybdatophosphoric acid, 2.5 g ceric sulphate tetrahydrate, 25 mL sulphuric acid and 225 19 mL water), ethanolic ninhydrin (3% v/v), and ethanolic sulphuric acid (15 % v/v), 20 respectively. Flash column chromatography (FC) was performed on Macherey-Nagel Silica Gel 60 (0.04-0.063 mm; 230-400 mesh ASTM). ¹H and ¹³C NMR spectra were recorded at 21 22 293 K on Bruker AC 250, Bruker Avance III 400 or Bruker Avance DRX 600 spectrometers. 23 Resonance assignments were made by the aid of COSY, HSQC and HMBC when necessary. 24 ¹H chemical shifts are referenced to residual protic solvent (CDCl₃, $\delta_{\rm H} = 7.26$ ppm; CD₃OD, $\delta_{\rm H} = 3.31$ ppm; DMSO-d₆, $\delta_{\rm H} = 2.50$ ppm). ¹³C chemical shifts are referenced to the solvent 25 signal (CDCl₃, $\delta_{\rm C}$ = 39.5 ppm; CD₃OD, $\delta_{\rm C}$ = 49.2 ppm; DMSO-d₆, $\delta_{\rm C}$ = 77.0 ppm). ESI-IT 26 27 mass spectra were recorded on a Bruker Daltonics Esquire 3000 plus instrument. MALDI-28 TOF mass spectra were recorded on a Bruker Biflex III spectrometer in positive, linear mode 29 with a delayed extraction MALDI source and a pulsed nitrogen laser (337 nm). Combustion elemental analysis was performed on an elementar CHNS vario EL analyzer. RP-HPLC was
performed on a LC-20 prominence system from Shimadzu. Used column: Nucleosil 100-5 C18 (semipreperative: 8 x 250 mm, flow 3 mL min⁻¹) from Knauer.Eluent: gradient of water
with 0.1% formic acid (eluent A) in acetonitrile with 0.1% formic acid (eluent B).

4-Methylumbelliferyl-3,4,6-tri-*O*-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino) -β-D-glucopyranoside (3)

 $C_{25}H_{26}Cl_3NO_{12} \\$

638.83 g/mol

AcO 0 7' 8' 0 2' 0 ACO NH

8

5

9

10

11 12

13 Compound 1 (1.875 g, 3 mmol, 1.0 eq) and 4-methylumbelliferone 2 (792 mg, 4.5 mmol, 1.5 eq) were dissolved at 0 °C in dry CH₂Cl₂ (30 mL). BF₃·OEt₂ (36 µL, 0.3 mmol, 0.1 eq) was 14 15 added and the mixture was stirred for 20 h at RT. The mixture was diluted with CH₂Cl₂ (120 16 mL), washed with saturated NaHCO₃ (2 x 120 mL), with water (2 x 120 mL) and with brine (1 x 120 mL), dried (MgSO₄), and the solvent was evaporated. Purification by FC (petroleum 17 ether-EtOAc 1:2) yielded 7 (1.154 g, 60%) as a white solid. $R_f = 0.31$ 18 (petroleum ether-19 EtOAc 1:2); ¹H NMR (400.1 MHz, CDCl₃): δ = 7.46 (d, J = 8.6 Hz, 1 H; H-5'), 6.94 (s, 1 H; 20 H-8'), 6.89 (d, J = 8.6 Hz, 1 H; H-6'), 6.16 (s, 1 H; H-3'), 5.62 (d, J = 8.7 Hz, 1 H; NH), 5.4421 (dd, *J* = 10.0, 9.6 Hz, 1 H; H-3), 5.35 (d, *J* = 8.0 Hz, 1 H; H-1), 5.14 (dd, *J* = 9.6, 9.4 Hz, 1 H; 22 H-4), 4.77-4.59 (m, 2 H; Cl₃CCH₂), 4.31 (dd, J = 12.0, 6.8 Hz, 1 H; H-6a), 4.18 (dd, J = 12.0, 23 1.5 Hz, 1 H; H-6b), 4.03-3.90 (m, 2 H; H-2, H-5), 2.37 (s, 1 H; Me), 2.12 (s, 3 H; C(O)CH₃), 2.08 (s, 3 H; C(O)CH₃), 2.07 (s, 3 H; C(O)CH₃) ppm; ¹³C-NMR (100.0 MHz, CDCl₃): $\delta =$ 24 170.6 (C(O)CH₃), 170.5 (C(O)CH₃), 169.5 (C(O)CH₃), 160.9, 159.3, 154.7, 154.1, 152.3 25 (quaternary C's), 125.6 (C-5'), 115.3 (quaternary C), 114.0 (C-6'), 113.0 (C-3'), 103.7 (C-8'), 26 27 98.2 (C-1), 95.4 (Cl₃CCH₂), 74.4 (Cl₃CCH₂), 72.4 (C-5), 71.5 (C-3), 68.4 (C-4), 61.9 (C-6), 28 56.0 (C-2), 20.7 (C(O)CH₃), 20.6 (C(O)CH₃), 20.6 (C(O)CH₃), 18.6 (CH₃') ppm; (MALDI-TOF-MS, pos. Mode, CHCA): $m/z [M+Na]^+$ calcd : 660.1, found: 660.9; $m/z [M+K]^+$ calcd: 29 30 676.1, found: 676.9; Anal. Calcd for C₂₅H₂₆Cl₃NO₁₂: C, 47.00; H, 4.10; N, 2.19. Found: C, 31 46.96; H, 4.28; N, 2.32.

7 Freshly activated Zn dust (3.5 g) was added to a solution of N-Troc derivative 3 (1.50 g, 2.35 8 mmol, 1.0 eq) in AcOH (85 mL). The reaction vessel was then sonicated for 24 h in a classic 9 ultrasonic cleaning bath below rt until the disappearance of starting material, as determined by TLC. The mixture was filtered through Celite, the filtrate was quenched with H₂O (80 mL), 10 11 and washed with CH₂Cl₂ (3 x 80 mL). The combined organic phases were washed with 12 saturated NaHCO₃ (80 mL) and with water (80 mL), dried (MgSO₄), and the solvent was 13 evaporated. Purification by FC (EtOAc) yielded 8 (946 mg, 2.04 mmol, 87%) as a white solid. 14 $R_{\rm f} = 0.31$ (EtOAc); ¹H NMR (250 MHz, CDCl₃): $\delta = 7.47$ (d, J = 8.6 Hz, 1 H; H-5'), 6.94 (s, 1 H; H-8'), 6.91 (d, J = 8.6 Hz, 1 H; H-6'), 6.13 (d, J = 1.2 Hz, 1 H; H-3'), 5.25-4.90 (m, 3 H; 15 16 H-1, H-3, H-4,), 4.27 (dd, J = 12.3, 5.5 Hz, 1 H; H-6a), 4.10 (dd, J = 12.3, 2.0 Hz, 1H; H-6b), 17 3.95-3.83 (m, 1H; H-5) 3.21 (t, J = 8.6 Hz, 1 H; H-2), 2.36 (s, 3H; Me), 2.07 (s, 3H; 18 C(O)CH₃), 2.06 (s, 3 H; C(O)CH₃), 2.01 (s, 3 H; C(O)CH₃) ppm; (MALDI-TOF-MS, pos. Mode, CHCA): *m*/*z* [*M*+Na]⁺ calcd: 486.1, found: 486.1; Anal. Calcd for C₂₂H₂₅NO₁₀: C, 19 20 57.02; H, 5.44; N, 3.02. Found: C, 56.99; H, 5.58; N, 2.75.

21

2

5

6

- 22 4-Methylumbelliferyl-2-amino-2-deoxy-β-D-glucopyranoside (5)
- 23
- 24

28

- $R_{\rm f} = 0.38$ (MeCN-H₂O 4:1); RP-HPLC (semi-preparative column) (5–80% B in 20 min): $t_{\rm R}$ 1 2 10.7 min; ¹H NMR (600 MHz, MeOD): $\delta = 8.46$ (br s; NH₂), 7.75 (d, J = 8.0 Hz, 1 H; H-5'), 3 7.17-7.12 (m, 2 H; H-6', H-8'), 6.24 (s, 1 H; H-3'), 5.18 (d, J = 8.0 Hz, 1 H; H-1), 3.92 (dd, J = 12.3, 2.0 Hz, 1 H; H-6a), 3.74 (dd, J = 12.3, 5.8 Hz, 1 H; H-6b), 3.59-3.40 (m, 3 H; H-3, H-4 4, H-5), 3.08 (t, J = 9.5 Hz, 1 H; H-2), 2.47 (s, 3 H; Me) ppm; ¹³C-NMR (150 MHz, CDCl₃): δ 5 6 = 163.4, 162.0, 156.2, 155.6 (quaternary C's), 127.5 (C-5'), 116.3 (quaternary C), 115.1 (C-7 6'), 113.1 (C-3'), 105.2 (C-8'), 102. 6 (C-1), 78.8 (C-5), 77.6 (C-3), 71.6 (C-4), 62.6 (C-6), 8 58.4 (C-2), 18.9 (Me) ppm; (ESI-MS, pos. Mode): *m*/*z* [*M*+H]⁺calc. : 338.1, found: 338.1. 9
- 10

1 Table S1. Identity of *Bs*NagZ with a partially purified GlcNAc`ase of *B. subtilis* reported

2 earlier (1, 4)

3

	<i>Bs</i> NagZ (this study)	Partially purified GlcNAc`ase (1, 4)	
Occurrence	produced towards the end of growth (i.e. late log phase, stationary phase)		
	released into medium		
Compartmentalisation	mainly found in a sedimentable form (about 70 % in the 30,000 x g sediment) with increasing culture age more particulate material (after 15h: about 90 % in the 30,000 x g sediment)		
NaCl extraction	80 - 90 % released from cells and from sedimented material with 3 M NaCl at 30,000 x g		
pH optimum	5.8-6.2	5.9-6.0	
most stable at	4.0- 8.0	8.5	
pI	9.37 (calculated)	"seems to be 3.8"	
MW	^a 70-75 kDa	75 kDa	
K _M ; specific activity (pNP-β-GlcNAc)	^b 171.6 μM 8.33 μmol/min mg	150 μM; 14.50 μmol/min mg	
K _M ; specific activity (4-β-Mu-GlcNAc)	109.6 μM; 5.39 μmol/min mg	110 μM; 5.26 μmol/min mg	
K _M ; Specific activity (GlcNAc-MurNAc)	n.d.	18 μM; 32.6 μmol/min mg	
4-Mu-β-GlcN	no substrate	n.d.	
4-Mu-β-GalNAc	no substrate	no substrate	

^a the calculated molecular weight of the cloned protein including His₆-tagis 71.3 kDa ^b kinetic parameters were determined at pH 5.8 in Clark and Lubs buffer (0.1M KH₂PO₄/0.1M

NaOH). n.d., not determined.

Figure S1. Purity of recombinant BsNagZ and BsAmiE. Sodium dodecyl sulfatepolyacrylamid gel electrophoresis (SDS-PAGE) of elution fractions (numbers) of the Nichelate affinity chromatography of BsNagZ (A) and BsAmiE (B). BsNagZ shows a molecular
weight of about 70-75 kDa (calculated 71.3 kDa) and BsAmiE of about 40-45 kDa (calculated
47.9 kDa). The molecular weight marker is indicated (M).

1

8 9

10

Figure S2. pH activity profile of NagZ. The k_{cat} versus pH plot revealed a bell-shaped curve with a pH-optimum in the range of 5.8 to 6.2 with 4-methylumbelliferyl- β -*N*-acetyl-Dglucosaminide (4-Mu- β -GlcNAc) as the substrate. The buffers were: 0.1 M citric acid/0.2 M disodium phosphate buffer (McIlvaine) ranging from pH 4.0 to 8.0 (\blacksquare); 0.2M sodium acetateacetic acid buffer ranging from 4.0 to 5.6 (\bigcirc) and Clark and Lubs solution (0.1 M KH₂PO₄/0.1 M NaOH) in the range of pH 5.8 to 8.0 (\square).

References

- Berkeley, R. C., S. J. Brewer, J. M. Ortiz, and J. B. Gillespie. 1973. An exo-β-N acetylglucosaminidase from *Bacillus subtilis* B; characterization. Biochim. Biophys.
 Acta 309:157-68.
- Dullenkopf, W., J. C. Castro-Palomino, L. Manzoni, and R. R. Schmidt. 1996. *N*trichloroethoxycarbonyl-glucosamine derivatives as glycosyl donors. Carbohydr. Res.
 296:135-47.
- Macauley, M. S., K. A. Stubbs, and D. J. Vocadlo. 2005. *O*-GlcNAcase catalyzes
 cleavage of thioglycosides without general acid catalysis. J. Am. Chem. Soc.
 127:17202-3.
- 4. Ortiz, J. M., J. B. Gillespie, and R. C. Berkeley. 1972. An exo-β-N acetylglucosaminidase from *Bacillus subtilis* B; extraction and purification. Biochim.
 Biophys. Acta 289:174-86.
- S. Roeser, K. R., and G. Legler. 1981. Role of sugar hydroxyl groups in glycoside
 hydrolysis. Cleavage mechanism of deoxyglucosides and related substrates by β glucosidase A3 from *Aspergillus wentii*. Biochim. Biophys. Acta 657:321-33.
- Whitworth, G. E., M. S. Macauley, K. A. Stubbs, R. J. Dennis, E. J. Taylor, G. J.
 Davies, I. R. Greig, and D. J. Vocadlo. 2007. Analysis of PUGNAc and NAG thiazoline as transition state analogues for human *O*-GlcNAcase: mechanistic and
 structural insights into inhibitor selectivity and transition state poise. J. Am. Chem.
 Soc. 129:635-44.